Have a personal or library account? Click to login
Pappus’s Hexagon Theorem in Real Projective Plane Cover

Pappus’s Hexagon Theorem in Real Projective Plane

By: Roland Coghetto  
Open Access
|Dec 2021

References

  1. Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
  2. Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.10.1007/s10817-017-9440-6604425130069070
  3. Gabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geometry. Journal of Automated Reasoning, 58(2):23, 2017. doi:10.1007/s10817-016-9374-4.10.1007/s10817-016-9374-4
  4. Roland Coghetto. Pascal’s theorem in real projective plane. Formalized Mathematics, 25(2):107–119, 2017. doi:10.1515/forma-2017-0011.10.1515/forma-2017-0011
  5. Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
  6. Laurent Fuchs and Laurent Thery. A formalization of Grassmann-Cayley algebra in Coq and its application to theorem proving in projective geometry. In Automated Deduction in Geometry, pages 51–67. Springer, 2010.10.1007/978-3-642-25070-5_3
  7. Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.10.1007/s10817-015-9333-5
  8. Adam Grabowski. Solving two problems in general topology via types. In Types for Proofs and Programs, International Workshop, TYPES 2004, Jouyen-Josas, France, December 15-18, 2004, Revised Selected Papers, pages 138–153, 2004. doi:10.1007/11617990_9. http://dblp.uni-trier.de/rec/bib/conf/types/Grabowski04.10.1007/11617990_9
  9. Eugeniusz Kusak and Wojciech Leończuk. Hessenberg theorem. Formalized Mathematics, 2(2):217–219, 1991.
  10. Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761–766, 1990.
  11. Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces – part I. Formalized Mathematics, 1(4):767–776, 1990.
  12. Jürgen Richter-Gebert. Pappos’s Theorem: Nine Proofs and Three Variations, pages 3–31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi:10.1007/978-3-642-17286-1_1.10.1007/978-3-642-17286-1_1
  13. Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.
DOI: https://doi.org/10.2478/forma-2021-0007 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 69 - 76
Accepted on: Jun 30, 2021
|
Published on: Dec 30, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Keywords:

© 2021 Roland Coghetto, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.