Have a personal or library account? Click to login
Ring and Field Adjunctions, Algebraic Elements and Minimal Polynomials Cover

Ring and Field Adjunctions, Algebraic Elements and Minimal Polynomials

Open Access
|Apr 2021

References

  1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.10.1007/s10817-017-9440-6604425130069070
  3. [3] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
  4. [4] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.10.1524/9783486599022
  5. [5] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
  6. [6] Christoph Schwarzweller. Renamings and a condition-free formalization of Kronecker’s construction. Formalized Mathematics, 28(2):129–135, 2020. doi:10.2478/forma-2020-0012.10.2478/forma-2020-0012
  7. [7] Christoph Schwarzweller. Representation matters: An unexpected property of polynomial rings and its consequences for formalizing abstract field theory. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, volume 15 of Annals of Computer Science and Information Systems, pages 67–72. IEEE, 2018. doi:10.15439/2018F88.10.15439/2018F88
  8. [8] Yasushige Watase. Algebraic numbers. Formalized Mathematics, 24(4):291–299, 2016. doi:10.1515/forma-2016-0025.10.1515/forma-2016-0025
DOI: https://doi.org/10.2478/forma-2020-0022 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 251 - 261
Accepted on: Sep 25, 2020
Published on: Apr 6, 2021
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Christoph Schwarzweller, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.