Have a personal or library account? Click to login
Klein-Beltrami model. Part IV Cover
By: Roland Coghetto  
Open Access
|May 2020

References

  1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
  2. [2] Eugenio Beltrami. Saggio di interpetrazione della geometria non-euclidea. Giornale di Matematiche, 6:284–322, 1868.
  3. [3] Eugenio Beltrami. Essai d’interprétation de la géométrie non-euclidéenne. In Annales scientifiques de l’École Normale Supérieure. Trad. par J. Hoüel, volume 6, pages 251–288. Elsevier, 1869.10.24033/asens.60
  4. [4] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.
  5. [5] Karol Borsuk and Wanda Szmielew. Podstawy geometrii. Państwowe Wydawnictwo Naukowe, Warszawa, 1955 (in Polish).
  6. [6] Roland Coghetto. Homography in 𝕉𝕇2. Formalized Mathematics, 24(4):239–251, 2016. doi:10.1515/forma-2016-0020.10.1515/forma-2016-0020
  7. [7] Roland Coghetto. Klein-Beltrami model. Part I. Formalized Mathematics, 26(1):21–32, 2018. doi:10.2478/forma-2018-0003.10.2478/forma-2018-0003
  8. [8] Roland Coghetto. Klein-Beltrami model. Part III. Formalized Mathematics, 28(1):1–7, 2020. doi:10.2478/forma-2020-0001.10.2478/forma-2020-0001
  9. [9] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381–383, 2003.
  10. [10] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master’s thesis.
  11. [11] William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167–176, 2014. doi:10.2478/forma-2014-0017.10.2478/forma-2014-0017
DOI: https://doi.org/10.2478/forma-2020-0002 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 9 - 21
Accepted on: Dec 30, 2019
|
Published on: May 29, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Roland Coghetto, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.