Have a personal or library account? Click to login
AIM Loops and the AIM Conjecture Cover
By: Chad E. Brown and  Karol Pąk  
Open Access
|Feb 2020

References

  1. [1] A. A. Albert. Quasigroups. I. Transactions of the American Mathematical Society, 54(3): 507–519, 1943.10.1090/S0002-9947-1943-0009962-7
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.10.1007/s10817-017-9440-6
  3. [3] Maria Paola Bonacina and Mark E. Stickel, editors. Automated Reasoning and Mathematics – Essays in Memory of William W. McCune, volume 7788 of Lecture Notes in Computer Science, 2013. Springer.10.1007/978-3-642-36675-8
  4. [4] Michael K. Kinyon, Robert Veroff, and Petr Vojtěchovský. Loops with abelian inner mapping groups: An application of automated deduction. In Bonacina and Stickel [3], pages 151–164.10.1007/978-3-642-36675-8_8
  5. [5] Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333–349, 2015. doi:10.1515/forma-2015-0027.10.1515/forma-2015-0027
DOI: https://doi.org/10.2478/forma-2019-0027 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 321 - 335
Accepted on: Aug 29, 2019
Published on: Feb 20, 2020
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Chad E. Brown, Karol Pąk, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.