Have a personal or library account? Click to login
On Roots of Polynomials over F[X]/ 〈p〉 Cover

On Roots of Polynomials over F[X]/ 〈p〉

Open Access
|Jul 2019

References

  1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.10.1007/s10817-017-9440-6604425130069070
  3. [3] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363–371, 2016. doi:10.15439/2016F520.10.15439/2016F520
  4. [4] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
  5. [5] Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029.10.2478/forma-2014-0029
  6. [6] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.10.1524/9783486599022
  7. [7] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391–395, 2001.
  8. [8] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–470, 2001.
  9. [9] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
  10. [10] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.
DOI: https://doi.org/10.2478/forma-2019-0010 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 93 - 100
Accepted on: Mar 28, 2019
|
Published on: Jul 20, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Christoph Schwarzweller, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.