Have a personal or library account? Click to login
Tarski Geometry Axioms. Part IV – Right Angle Cover

Tarski Geometry Axioms. Part IV – Right Angle

Open Access
|May 2019

References

  1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.10.1007/s10817-017-9440-6604425130069070
  3. [3] Michael Beeson and Larry Wos. OTTER proofs in Tarskian geometry. In International Joint Conference on Automated Reasoning, volume 8562 of Lecture Notes in Computer Science, pages 495–510. Springer, 2014. doi:10.1007/978-3-319-08587-6 38.10.1007/978-3-319-08587-638
  4. [4] Michael Beeson, Julien Narboux, and Freek Wiedijk. Proof-checking Euclid. Annals of Mathematics and Artificial Intelligence, Jan 2019. doi:10.1007/s10472-018-9606-x.10.1007/s10472-018-9606-x
  5. [5] Pierre Boutry, Gabriel Braun, and Julien Narboux. Formalization of the Arithmetization of Euclidean Plane Geometry and Applications. Journal of Symbolic Computation, 90: 149–168, 2019. doi:10.1016/j.jsc.2018.04.007.10.1016/j.jsc.2018.04.007
  6. [6] Pierre Boutry, Charly Gries, Julien Narboux, and Pascal Schreck. Parallel postulates and continuity axioms: a mechanized study in intuitionistic logic using Coq. Journal of Automated Reasoning, 62(1):1–68, 2019.10.1007/s10817-017-9422-8
  7. [7] Roland Coghetto and Adam Grabowski. Tarski geometry axioms. Part III. Formalized Mathematics, 25(4):289–313, 2017. doi:10.1515/forma-2017-0028.10.1515/forma-2017-0028
  8. [8] Sana Stojanovic Durdevic, Julien Narboux, and Predrag Janičić. Automated generation of machine verifiable and readable proofs: a case study of Tarski’s geometry. Annals of Mathematics and Artificial Intelligence, 74(3-4):249–269, 2015.10.1007/s10472-014-9443-5
  9. [9] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Maria Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of ACSIS – Annals of Computer Science and Information Systems, pages 373–381, 2016. doi:10.15439/2016F290.10.15439/2016F290
  10. [10] Adam Grabowski and Roland Coghetto. Tarski’s geometry and the Euclidean plane in Mizar. In Joint Proceedings of the FM4M, MathUI, and ThEdu Workshops, Doctoral Program, and Work in Progress at the Conference on Intelligent Computer Mathematics 2016 co-located with the 9th Conference on Intelligent Computer Mathematics (CICM 2016), Białystok, Poland, July 25–29, 2016, volume 1785 of CEUR-WS, pages 4–9, 2016.
  11. [11] Haragauri Narayan Gupta. Contributions to the Axiomatic Foundations of Geometry. PhD thesis, University of California-Berkeley, 1965.
  12. [12] Julien Narboux. Mechanical theorem proving in Tarski’s geometry. In Francisco Botana and Tomas Recio, editors, Automated Deduction in Geometry, pages 139–156, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-77356-6.10.1007/978-3-540-77356-6_9
  13. [13] William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167–176, 2014. doi:10.2478/forma-2014-0017.10.2478/forma-2014-0017
  14. [14] Wolfram Schwabhcuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.10.1007/978-3-642-69418-9
DOI: https://doi.org/10.2478/forma-2019-0008 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 75 - 85
Accepted on: Mar 11, 2019
|
Published on: May 16, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Roland Coghetto, Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.