Have a personal or library account? Click to login
Parity as a Property of Integers Cover
By: Rafał Ziobro  
Open Access
|Dec 2018

References

  1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.10.1007/s10817-017-9440-6604425130069070
  3. [3] Yoshinori Fujisawa and Yasushi Fuwa. Definitions of radix-2k signed-digit number and its adder algorithm. Formalized Mathematics,9(1):71–75, 2001.
  4. [4] Adam Naumowicz. On the representation of natural numbers in positional numeral systems. Formalized Mathematics, 14(4):221–223, 2006. doi:10.2478/v10037-006-0025-9.10.2478/v10037-006-0025-9
  5. [5] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
  6. [6] Lucio Russo and Silvio Levy (translator). The forgotten revolution: how science was born in 300 BC and why it had to be reborn. Springer Science & Business Media, 2013.
  7. [7] Walter Warwick Sawyer. Vision in elementary mathematics. Courier Corporation, 2003.
  8. [8] Christoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3): 247–252, 2008. doi:10.2478/v10037-008-0029-8.10.2478/v10037-008-0029-8
  9. [9] Rina Zazkis. Odds and ends of odds and evens: An inquiry into students’ understanding of even and odd numbers. Educational Studies in Mathematics, 36(1):73–89, Jun 1998. doi:10.1023/A:1003149901409.10.1023/A:1003149901409
  10. [10] Rafał Ziobro. Fermat’s Little Theorem via divisibility of Newton’s binomial. Formalized Mathematics, 23(3):215–229, 2015. doi:10.1515/forma-2015-0018.10.1515/forma-2015-0018
DOI: https://doi.org/10.2478/forma-2018-0008 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 91 - 100
Accepted on: Jun 29, 2018
|
Published on: Dec 24, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Rafał Ziobro, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.