Have a personal or library account? Click to login
Some Facts about Trigonometry and Euclidean Geometry Cover

Some Facts about Trigonometry and Euclidean Geometry

By: Roland Coghetto  
Open Access
|Dec 2014

References

  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  4. [4] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
  5. [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  6. [6] Czesław Bylinski. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
  7. [7] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  8. [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  9. [9] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of America (Inc.), 1967.10.5948/UPO9780883859346
  10. [10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
  11. [11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
  12. [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  13. [13] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.
  14. [14] Nikolai Vladimirovich Efimov. G´eom´etrie sup´erieure. Mir, 1981.
  15. [15] Richard Fitzpatrick. Euclid’s Elements. Lulu.com, 2007.
  16. [16] Robin Hartshorne. Geometry: Euclid and beyond. Springer, 2000.10.1007/978-0-387-22676-7
  17. [17] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
  18. [18] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005.
  19. [19] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space. Formalized Mathematics, 11(3):281-287, 2003.
  20. [20] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9 (3):455-460, 2001.
  21. [21] Yatsuka Nakamura. General Fashoda meet theorem for unit circle and square. Formalized Mathematics, 11(3):213-224, 2003.
  22. [22] Yatsuka Nakamura and Czesław Bylinski. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
  23. [23] Chanapat Pacharapokin, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004.
  24. [24] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
  25. [25] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16 (2):97-101, 2008. doi:10.2478/v10037-008-0014-2.10.2478/v10037-008-0014-2
  26. [26] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
  27. [27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  28. [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  29. [29] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
DOI: https://doi.org/10.2478/forma-2014-0031 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 313 - 319
Submitted on: Sep 29, 2014
|
Published on: Dec 31, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Roland Coghetto, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.