Have a personal or library account? Click to login
The First Isomorphism Theorem and Other Properties of Rings Cover

The First Isomorphism Theorem and Other Properties of Rings

Open Access
|Dec 2014

References

  1. [1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  5. [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  6. [6] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
  7. [7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  8. [8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  9. [9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  10. [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  11. [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  12. [12] Nathan Jacobson. Basic Algebra I. 2nd edition. Dover Publications Inc., 2009.
  13. [13] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
  14. [14] Artur Korniłowicz. Quotient rings. Formalized Mathematics, 13(4):573-576, 2005.
  15. [15] Jarosław Kotowicz. Quotient vector spaces and functionals. Formalized Mathematics, 11 (1):59-68, 2003.
  16. [16] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
  17. [17] Heinz L¨uneburg. Die grundlegenden Strukturen der Algebra (in German). Oldenbourg Wisenschaftsverlag, 1999.
  18. [18] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
  19. [19] Michał Muzalewski. Opposite rings, modules and their morphisms. Formalized Mathematics, 3(1):57-65, 1992.
  20. [20] Michał Muzalewski. Category of rings. Formalized Mathematics, 2(5):643-648, 1991.
  21. [21] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
  22. [22] Michał Muzalewski and Wojciech Skaba. From loops to Abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
  23. [23] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
  24. [24] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
  25. [25] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
  26. [26] Christoph Schwarzweller. The correctness of the generic algorithms of Brown and Henrici concerning addition and multiplication in fraction fields. Formalized Mathematics, 6(3): 381-388, 1997.
  27. [27] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
  28. [28] Christoph Schwarzweller. The field of quotients over an integral domain. Formalized Mathematics, 7(1):69-79, 1998.
  29. [29] Christoph Schwarzweller. Introduction to rational functions. Formalized Mathematics, 20 (2):181-191, 2012. doi:10.2478/v10037-012-0021-1.10.2478/v10037-012-0021-1
  30. [30] Christoph Schwarzweller and Agnieszka Rowinska-Schwarzweller. Schur’s theorem on the stability of networks. Formalized Mathematics, 14(4):135-142, 2006. doi:10.2478/v10037-006-0017-9.10.2478/v10037-006-0017-9
  31. [31] Yasunari Shidama, Hikofumi Suzuki, and Noboru Endou. Banach algebra of bounded functionals. Formalized Mathematics, 16(2):115-122, 2008. doi:10.2478/v10037-008-0017- z.
  32. [32] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.
  33. [33] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
  34. [34] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
  35. [35] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  36. [36] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
  37. [37] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
  38. [38] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  39. [39] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
  40. [40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  41. [41] B.L. van der Waerden. Algebra I. 4th edition. Springer, 2003.
  42. [42] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  43. [43] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/forma-2014-0029 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 291 - 301
Submitted on: Nov 29, 2014
|
Published on: Dec 31, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Artur Korniłowicz, Christoph Schwarzweller, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.