Have a personal or library account? Click to login
Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module Cover

Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module

Open Access
|Mar 2014

References

  1. [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007. doi:10.2478/v10037-007-0015-6.10.2478/v10037-007-0015-6
  2. [2] Michael Francis Atiyah and Ian Grant Macdonald. Introduction to Commutative Algebra, volume 2. Addison-Wesley Reading, 1969.
  3. [3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  4. [4] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
  5. [5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  6. [6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  7. [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  8. [8] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
  9. [9] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.
  10. [10] Czesław Bylinski. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
  11. [11] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  12. [12] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  13. [13] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  14. [14] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
  15. [15] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  16. [16] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  17. [17] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  18. [18] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  19. [19] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.10.2478/v10037-012-0007-z
  20. [20] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.10.2478/v10037-012-0024-y
  21. [21] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free Z-module. Formalized Mathematics, 20(4):275-280, 2012. doi:10.2478/v10037-012-0033-x.10.2478/v10037-012-0033-x
  22. [22] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
  23. [23] Serge Lang. Algebra. Springer, 3rd edition, 2005.
  24. [24] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
  25. [25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.
  26. [26] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
  27. [27] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
  28. [28] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  29. [29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  30. [30] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1 (5):877-882, 1990.
  31. [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  32. [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  33. [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/forma-2014-0021 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 189 - 198
Submitted on: Jul 10, 2014
Published on: Mar 31, 2014
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.