Have a personal or library account? Click to login
Cauchy Mean Theorem Cover
By: Adam Grabowski  
Open Access
|Jun 2014

References

  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
  2. [2] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563–567, 1990.
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
  5. [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
  6. [6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
  7. [7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
  8. [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
  9. [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
  10. [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
  11. [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
  12. [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
  13. [13] Fuguo Ge and Xiquan Liang. On the partial product of series and related basic inequalities. Formalized Mathematics, 13(3):413–416, 2005.
  14. [14] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841–845, 1990.
  15. [15] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181–187, 2005.
  16. [16] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275–278, 1992.
  17. [17] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
  18. [18] Benjamin Porter. Cauchy’s mean theorem and the Cauchy-Schwarz inequality. Archive of Formal Proofs, March 2006. ISSN 2150-914x. http://afp.sf.net/entries/Cauchy. shtml, Formal proof development.
  19. [19] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
  20. [20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
  21. [21] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341–347, 2003.
  22. [22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
  23. [23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
  24. [24] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
  25. [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
  26. [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
DOI: https://doi.org/10.2478/forma-2014-0016 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 157 - 166
Submitted on: Jun 13, 2014
|
Published on: Jun 30, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.