Have a personal or library account? Click to login
Topological Interpretation of Rough Sets Cover

Topological Interpretation of Rough Sets

By: Adam Grabowski  
Open Access
|Mar 2014

References

  1. [1] Lilla Krystyna Baginska and Adam Grabowski. On the Kuratowski closure-complement problem. Formalized Mathematics, 11(3):323-329, 2003.
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  5. [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  6. [6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  7. [7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  8. [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  9. [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  10. [10] Adam Grabowski. Automated discovery of properties of rough sets. Fundamenta Informaticae, 128:65-79, 2013. doi:10.3233/FI-2013-933.10.3233/FI-2013-933
  11. [11] Adam Grabowski. Basic properties of rough sets and rough membership function. Formalized Mathematics, 12(1):21-28, 2004.
  12. [12] Adam Grabowski. Relational formal characterization of rough sets. Formalized Mathematics, 21(1):55-64, 2013. doi:10.2478/forma-2013-0006.10.2478/forma-2013-0006
  13. [13] Yoshinori Isomichi. New concepts in the theory of topological space - supercondensed set, subcondensed set, and condensed set. Pacific Journal of Mathematics, 38(3):657-668, 1971.10.2140/pjm.1971.38.657
  14. [14] Magdalena Jastrz¸ebska and Adam Grabowski. The properties of supercondensed sets, subcondensed sets and condensed sets. Formalized Mathematics, 13(2):353-359, 2005.
  15. [15] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
  16. [16] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized Mathematics, 6(2):269-277, 1997.
  17. [17] Kazimierz Kuratowski. Sur l’opération A de l’analysis situs. Fundamenta Mathematicae, 3:182-199, 1922.10.4064/fm-3-1-182-199
  18. [18] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
  19. [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
  20. [20] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.
  21. [21] Bartłomiej Skorulski. The sequential closure operator in sequential and Frechet spaces. Formalized Mathematics, 8(1):47-54, 1999.
  22. [22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
  23. [23] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1 (3):495-500, 1990.
  24. [24] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990.
  25. [25] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.
  26. [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  27. [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  28. [28] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.
DOI: https://doi.org/10.2478/forma-2014-0010 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 89 - 97
Published on: Mar 30, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.