Have a personal or library account? Click to login
Prime Filters and Ideals in Distributive Lattices Cover

Prime Filters and Ideals in Distributive Lattices

By: Adam Grabowski  
Open Access
|Oct 2013

References

  1. [1] Raymond Balbes and Philip Dwinger. Distributive Lattices. University of Missouri Press, 1975.
  2. [2] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813-819, 1990.
  3. [3] Grzegorz Bancerek. Ideals. Formalized Mathematics, 5(2):149-156, 1996.
  4. [4] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
  5. [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  6. [6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  7. [7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  8. [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  9. [9] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.10.1007/978-3-642-67678-9
  10. [10] George Grätzer. General Lattice Theory. Academic Press, New York, 1978.10.1007/978-3-0348-7633-9
  11. [11] George Grätzer. Lattice Theory: Foundation. Birkhäuser, 2011.10.1007/978-3-0348-0018-1
  12. [12] Jolanta Kamienska. Representation theorem for Heyting lattices. Formalized Mathematics, 4(1):41-45, 1993.
  13. [13] Jolanta Kamienska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35-40, 1993.
  14. [14] Agnieszka Julia Marasik. Boolean properties of lattices. Formalized Mathematics, 5(1): 31-35, 1996.
  15. [15] Leopoldo Nachbin. Une propriété characteristique des algebres booleiennes. Portugaliae Mathematica, 6:115-118, 1947.
  16. [16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
  17. [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
  18. [18] Marshall H. Stone. The theory of representations of Boolean algebras. Transactions of the American Mathematical Society, 40:37-111, 1936.10.1090/S0002-9947-1936-1501865-8
  19. [19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
  20. [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  21. [21] Jarosław Stanisław Walijewski. Representation theorem for Boolean algebras. Formalized Mathematics, 4(1):45-50, 1993.
  22. [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  23. [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
  24. [24] Stanisław Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990.
DOI: https://doi.org/10.2478/forma-2013-0023 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 213 - 221
Published on: Oct 1, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 21 (2013): Issue 3 (October 2013)