Have a personal or library account? Click to login
The Linearity of Riemann Integral on Functions from ℝ into Real Banach Space Cover

The Linearity of Riemann Integral on Functions from ℝ into Real Banach Space

Open Access
|Oct 2013

References

  1. [1] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263-269, 1992.
  2. [2] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
  3. [3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  4. [4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  5. [5] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  6. [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  7. [7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
  8. [8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
  9. [9] Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from R into real normed space. Formalized Mathematics, 19(1):17-22, 2011. doi:10.2478/v10037-011-0003-8.10.2478/v10037-011-0003-8
  10. [10] Keiichi Miyajima, Artur Korniłowicz, and Yasunari Shidama. Riemann integral of functions from R into n-dimensional real normed space. Formalized Mathematics, 20(1):79-86, 2012. doi:10.2478/v10037-012-0011-3.10.2478/v10037-012-0011-3
  11. [11] Keiko Narita, Noboru Endou, and Yasunari Shidama. Riemann integral of functions from R into real Banach space. Formalized Mathematics, 21(2):145-152, 2013. doi:10.2478/forma-2013-0016.10.2478/forma-2013-0016
  12. [12] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.
  13. [13] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011. doi:10.2478/v10037-011-0008-3.10.2478/v10037-011-0008-3
  14. [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
  15. [15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
  16. [16] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
  17. [17] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
  18. [18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  19. [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  20. [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  21. [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
  22. [22] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.
DOI: https://doi.org/10.2478/forma-2013-0020 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 185 - 191
Published on: Oct 1, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Keiko Narita, Noboru Endou, Yasunari Shidama, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 21 (2013): Issue 3 (October 2013)