Have a personal or library account? Click to login
More on Divisibility Criteria for Selected Primes Cover

More on Divisibility Criteria for Selected Primes

Open Access
|Jun 2013

References

  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  4. [4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
  5. [5] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.
  6. [6] Grzegorz Bancerek. Veblen hierarchy. Formalized Mathematics, 19(2):83-92, 2011. doi:10.2478/v10037-011-0014-5.10.2478/v10037-011-0014-5
  7. [7] C.C. Briggs. Simple divisibility rules for the 1st 1000 prime numbers. arXiv preprint arXiv:math/0001012, 2000.
  8. [8] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  9. [9] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  10. [10] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  11. [11] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  12. [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  13. [13] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.
  14. [14] Magdalena Jastrz¸ebska and Adam Grabowski. Some properties of Fibonacci numbers. Formalized Mathematics, 12(3):307-313, 2004.
  15. [15] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
  16. [16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
  17. [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.
  18. [18] Yatsuka Nakamura and Hisashi Ito. Basic properties and concept of selected subsequence of zero based finite sequences. Formalized Mathematics, 16(3):283-288, 2008. doi:10.2478/v10037-008-0034-y.10.2478/v10037-008-0034-y
  19. [19] Adam Naumowicz. On the representation of natural numbers in positional numeral systems. Formalized Mathematics, 14(4):221-223, 2006. doi:10.2478/v10037-006-0025-9.10.2478/v10037-006-0025-9
  20. [20] Karol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
  21. [21] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
  22. [22] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
  23. [23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  24. [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  25. [25] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
  26. [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  27. [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/forma-2013-0010 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 87 - 94
Published on: Jun 1, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Adam Naumowicz, Radosław Piliszek, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 21 (2013): Issue 2 (June 2013)