Have a personal or library account? Click to login
Efficient and cost-effective monitoring of urban green spaces using combination of photogrammetry, LiDAR, and RTK in an iPhone-Based approach Cover

Efficient and cost-effective monitoring of urban green spaces using combination of photogrammetry, LiDAR, and RTK in an iPhone-Based approach

Open Access
|Aug 2025

References

  1. Astrup, R., Ducey, M. J., Granhus, A., Ritter, T., von Lüpke, N., 2014: Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Canadian Journal of Forest Research, 44:666–676.
  2. Balenović, I., Liang, X., Jurjević, L., Hyyppä, J., Seletković, A., Kukko, A., 2021: Hand-held personal laser scanning–current status and perspectives for forest inventory application. Croatian Journal of Forest Engineering, 42:165–183.
  3. Bauwens, S., Bartholomeus, H., Calders, K., Lejeune, P., 2016: Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests, 7:127.
  4. Brown, R., Hartzell, P., Glennie, C., 2020: Evaluation of SPL100 Single Photon Lidar Data. Remote Sensing, 12:722.
  5. Bruggisser, M., Hollaus, M., Kükenbrink, D., Pfeifer, N., 2019: Comparison of forest structure metrics derived from UAV LiDAR and ALS DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5:325–332.
  6. Cabo, C., Del Pozo, S., Rodríguez-Gonzálvez, P., Ordóñez, C., González-Aguilera, D., 2018: Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level. Remote Sensing, 10:540.
  7. Černava, J., Mokroš, M., Tuček, J., Antal, M., Slatkovská, Z., 2019: Processing chain for estimation of tree diameter from GNSS-IMU-based mobile laser scanning data. Remote Sensing, 11:615.
  8. Fan, Y., Feng, Z., Mannan, A., Khan, T. U., Shen, C., Saeed, S., 2018: Estimating Tree Position, Diameter at Breast Height, and Tree Height in Real-Time Using a Mobile Phone with RGB-D SLAM. Remote Sensing, 10:1845.
  9. Grêt-Regamey, A., Celio, E., Klein, T. M., Wissen Hayek, U., 2013: Understanding ecosystem services tradeoffs with interactive procedural modeling for sustainable urban planning. Landscape and Urban Planning, 109:107–116.
  10. Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., Nothdurft, A., 2021: Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology. Remote Sensing, 13:3129.
  11. Hirabayashi, S., 2021: Technical specifications of urban forests for air purification: A case study in Tokyo, Japan. Trees, Forests and People, 4:100078.
  12. Holopainen, M., Kankare, V., Vastaranta, M., Liang, X., Lin, Y., Vaaja, M. et al., 2013: Tree mapping using airborne, terrestrial and mobile laser scanning: A case study in a heterogeneous urban forest. Urban Forestry & Urban Greening, 12:546–553.
  13. Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J. C., Wulder, M. A., Pyorala, J. et al., 2020: Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 161:246–262.
  14. Hyyppä, E., Yu, X., Kaartinen, H., Hakala, T., Kukko, A., Vastaranta, M. et al., 2020: Comparison of backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests. Remote Sensing, 12:203327.
  15. Chase, P. P. C., Clarke, K. H., Hawkes, A. J., Jabari, S., Jakus, J. S., 2022: Apple IPhone 13 Pro LiDAR Accuracy Assessment for Engineering Applications. Conference of Transforming Construction with Reality Capture Technologies: The Digital Reality of Tomorrow, Fredericton, New Brunswick, Canada, p. 1–10.
  16. Chen, S., Liu, H., Feng, Z., Shen, C., Chen, P., 2019: Applicability of personal laser scanning in forestry inventory. PLoS ONE, 14:22.
  17. Chudá, J., Výbošťok, J., Tomaštík, J., Chudý, F., Tunák, D., Skladan, M. et al., 2024: Prompt Mapping Tree Positions with Handheld Mobile Scanners Based on SLAM Technology. Land, 13:93.
  18. Jaalama, K., Kauhanen, H., Keitaanniemi, A., Rantanen, T., Virtanen, J.-P., Julin, A. t al., 2021: 3D Point Cloud Data in Conveying Information for Local Green Factor Assessment. ISPRS International Journal of Geo-Information, 10:762.
  19. Li, T., Zheng, X., Wu, J., Zhang, Y., Fu, X., Deng, H., 2021: Spatial relationship between green view index and normalized differential vegetation index within the Sixth Ring Road of Beijing. Urban Forestry & Urban Greening, 62:127153.
  20. Li, X., Ratti, C., Seiferling, I., 2018: Quantifying the shade provision of street trees in urban landscape: A case study in Boston, USA, using Google Street View. Landscape and Urban Planning, 169:81–91. Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A.,
  21. Haggrén, H. et al., 2016: Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115:63–77.
  22. Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N. et al., 2018: International Benchmarking of Terrestrial Laser Scanning Approaches for Forest Inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144:137–179.
  23. Liang, X., Kukko, A., Balenovic, I., Ninni, S., Junttila, S., Kankare, V. et al., 2022: Close-Range Remote Sensing of Forests: The State of the Art, Challenges, and Opportunities for Systems and Data Acquisitions. IEEE Geoscience and Remote Sensing Magazine, 2–41.
  24. Mokroš, M., Liang, X., Surový, P., Valent, P., Černava, J., Chudý, F. et al., 2018: Evaluation of Close-Range Photogrammetry Image Collection Methods for Estimating Tree Diameters. ISPRS International Journal of Geo-Information, 7:93.
  25. Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Węžyk, P. et al., 2021: Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation, 104.
  26. Nowak, D. J., Crane, D. E., Stevens, J. C., Hoehn, R. E., Walton, J. T., Bond, J., 2008: A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboriculture & Urban Forestry, 34:347–358.
  27. Hartzell, P., Dang, Z., Pan, Z., Glennie, C., 2018: Radio-metric Evaluation of an Airborne Single Photon Lidar Sensor. IEEE Geoscience and Remote Sensing Letters, 15:1466–1470.
  28. Oikawa, N., Nakagawa, Y., Owari, T., Tatsumi, S., Suzuki, S. N., 2025: Utilising LiDAR-equipped iPhone in forestry: Constructing 3D models and measuring tree sizes in a planting site. Ecological Solutions and Evidence, 6:e12399.
  29. Piermattei, L., Karel, W., Wang, D., Wieser, M., Mokroš, M., Surový, P. et al., 2019: Terrestrial structure from motion photogrammetry for deriving forest inventory data. Remote Sensing, 11:950.
  30. Pu, R., Landry, S., 2012: A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment, 124:516–533.
  31. Qian, C., Liu, H., Tang, J., Chen, Y., Kaartinen, H., Kukko, A. et al., 2017: An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping. Remote Sensing, 9:1–16.
  32. Richardson, J., Isebrands, J. G., 2013: Poplars and Willows: Trees for Society and the Environment. Proceedings of the 13th North American Agroforestry Conference, June 19–21, 2013, Charlottetown, Prince Edward Island, Canada, p. 35–37.
  33. Ritter, T., Gollob, C., Nothdurft, A., 2020: Towards an Optimization of Sample Plot Size and Scanner Position Layout for Terrestrial Laser Scanning in Multi-Scan Mode. Forests, 11:1099.
  34. Roberts, J., Koeser, A., Abd-Elrahman, A., Wilkinson, B., Hansen, G., Landry, S. et al., 2019: Mobile Terrestrial Photogrammetry for Street Tree Mapping and Measurements. Forests, 10:701.
  35. Schmohl, S., Narváez Vallejo, A., Soergel, U., 2022: Individual Tree Detection in Urban ALS Point Clouds with 3D Convolutional Networks. Remote Sensing, 14:1317.
  36. Shahtahmassebi, A. R., Li, C., Fan, Y., Wu, Y., Gan, M., Wang, K. et al., 2021: Remote sensing of urban green spaces: A review. Urban Forestry & Urban Greening, 57:126946.
  37. Shekhar, S., Aryal, J., 2019: Role of geospatial technology in understanding urban green space of Kalaburagi city for sustainable planning. Urban Forestry & Urban Greening, 46:126450.
  38. Skladan, M., Chudá, J., Singh, A., Masný, M., Lieskovský, M., Pástor, M. et al., 2025: Choosing the right close-range technology for measuring DBH in fast-growing trees plantations. Trees, Forests and People, 19:100747.
  39. Tang, L., He, J., Peng, W., Huang, H., Chen, C., Yu, C., 2023: Assessing the visibility of urban greenery using MLS LiDAR data. Landscape and Urban Planning, 232:104662.
  40. Tatsumi, S., Yamaguchi, K., Furuya, N., 2023. ForestS-canner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods in Ecology and Evolution, 14:1603–1609.
  41. Tomaštík, J., Mokroš, M., Saloň, Š., Chudý, F., Tunák, D., 2017: Accuracy of Photogrammetric UAV-Based Point Clouds under Conditions of Partially-Open Forest Canopy. Forests, 8:151.
  42. Torkan, M., Janiszewski, M., Uotinen, L., Rinne, M., 2023: Method to Obtain 3D Point Clouds of Tunnels Using Smartphone LiDAR and Comparison to Photogrammetry. IOP Conference Series: Earth and Environmental Science, 1124:012016.
  43. Wang, X., Singh, A., Pervysheva, Y., Lamatungga, K. E., Murtinová, V., Mukarram, M. et al., 2021: Evaluation of iPad Pro 2020 LiDAR for estimating tree diameters in urban forest. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, VIII-4:105–110.
  44. Wang, X., Wu, C., 2020: An Observational Study of Park Attributes and Physical Activity in Neighborhood Parks of Shanghai, China. International Journal of Environmental Research and Public Health, 17:2080.
  45. Wang, X., Rahman, M. A., Mokroš, M., Rötzer, T., Pattnaik, N., Pang, Y. et al., 2023: The influence of vertical canopy structure on the cooling and humidifying urban microclimate during hot summer days. Landscape and Urban Planning, 238:104841.
  46. Wujanz, D., Avian, M., Krueger, D., Neitzel, F., 2018: Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring. Earth Surface Dynamics, 6:303–317.
  47. Zięba-Kulawik, K., Skoczylas, K., Wężyk, P., Teller, J., Mustafa, A., Omrani, H., 2021: Monitoring of urban forests using 3D spatial indices based on LiDAR point clouds and voxel approach. Urban Forestry & Urban Greening, 65:127324.
  48. R Core Team, 2024: R: A language and environment for statistical computing (version 4.3.2). R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.
DOI: https://doi.org/10.2478/forj-2025-0007 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 207 - 223
Published on: Aug 12, 2025
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Jozef Výbošťok, Juliána Chudá, Michal Skladan, Arunima Singh, Daniel Tomčík, Martin Mokroš, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.