References
- Astrup, R., Ducey, M. J., Granhus, A., Ritter, T., von Lüpke, N., 2014: Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Canadian Journal of Forest Research, 44:666–676.
- Balenović, I., Liang, X., Jurjević, L., Hyyppä, J., Seletković, A., Kukko, A., 2021: Hand-held personal laser scanning–current status and perspectives for forest inventory application. Croatian Journal of Forest Engineering, 42:165–183.
- Bauwens, S., Bartholomeus, H., Calders, K., Lejeune, P., 2016: Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests, 7:127.
- Brown, R., Hartzell, P., Glennie, C., 2020: Evaluation of SPL100 Single Photon Lidar Data. Remote Sensing, 12:722.
- Bruggisser, M., Hollaus, M., Kükenbrink, D., Pfeifer, N., 2019: Comparison of forest structure metrics derived from UAV LiDAR and ALS DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5:325–332.
- Cabo, C., Del Pozo, S., Rodríguez-Gonzálvez, P., Ordóñez, C., González-Aguilera, D., 2018: Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level. Remote Sensing, 10:540.
- Černava, J., Mokroš, M., Tuček, J., Antal, M., Slatkovská, Z., 2019: Processing chain for estimation of tree diameter from GNSS-IMU-based mobile laser scanning data. Remote Sensing, 11:615.
- Fan, Y., Feng, Z., Mannan, A., Khan, T. U., Shen, C., Saeed, S., 2018: Estimating Tree Position, Diameter at Breast Height, and Tree Height in Real-Time Using a Mobile Phone with RGB-D SLAM. Remote Sensing, 10:1845.
- Grêt-Regamey, A., Celio, E., Klein, T. M., Wissen Hayek, U., 2013: Understanding ecosystem services tradeoffs with interactive procedural modeling for sustainable urban planning. Landscape and Urban Planning, 109:107–116.
- Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., Nothdurft, A., 2021: Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology. Remote Sensing, 13:3129.
- Hirabayashi, S., 2021: Technical specifications of urban forests for air purification: A case study in Tokyo, Japan. Trees, Forests and People, 4:100078.
- Holopainen, M., Kankare, V., Vastaranta, M., Liang, X., Lin, Y., Vaaja, M. et al., 2013: Tree mapping using airborne, terrestrial and mobile laser scanning: A case study in a heterogeneous urban forest. Urban Forestry & Urban Greening, 12:546–553.
- Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J. C., Wulder, M. A., Pyorala, J. et al., 2020: Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 161:246–262.
- Hyyppä, E., Yu, X., Kaartinen, H., Hakala, T., Kukko, A., Vastaranta, M. et al., 2020: Comparison of backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests. Remote Sensing, 12:203327.
- Chase, P. P. C., Clarke, K. H., Hawkes, A. J., Jabari, S., Jakus, J. S., 2022: Apple IPhone 13 Pro LiDAR Accuracy Assessment for Engineering Applications. Conference of Transforming Construction with Reality Capture Technologies: The Digital Reality of Tomorrow, Fredericton, New Brunswick, Canada, p. 1–10.
- Chen, S., Liu, H., Feng, Z., Shen, C., Chen, P., 2019: Applicability of personal laser scanning in forestry inventory. PLoS ONE, 14:22.
- Chudá, J., Výbošťok, J., Tomaštík, J., Chudý, F., Tunák, D., Skladan, M. et al., 2024: Prompt Mapping Tree Positions with Handheld Mobile Scanners Based on SLAM Technology. Land, 13:93.
- Jaalama, K., Kauhanen, H., Keitaanniemi, A., Rantanen, T., Virtanen, J.-P., Julin, A. t al., 2021: 3D Point Cloud Data in Conveying Information for Local Green Factor Assessment. ISPRS International Journal of Geo-Information, 10:762.
- Li, T., Zheng, X., Wu, J., Zhang, Y., Fu, X., Deng, H., 2021: Spatial relationship between green view index and normalized differential vegetation index within the Sixth Ring Road of Beijing. Urban Forestry & Urban Greening, 62:127153.
- Li, X., Ratti, C., Seiferling, I., 2018: Quantifying the shade provision of street trees in urban landscape: A case study in Boston, USA, using Google Street View. Landscape and Urban Planning, 169:81–91. Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A.,
- Haggrén, H. et al., 2016: Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115:63–77.
- Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N. et al., 2018: International Benchmarking of Terrestrial Laser Scanning Approaches for Forest Inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144:137–179.
- Liang, X., Kukko, A., Balenovic, I., Ninni, S., Junttila, S., Kankare, V. et al., 2022: Close-Range Remote Sensing of Forests: The State of the Art, Challenges, and Opportunities for Systems and Data Acquisitions. IEEE Geoscience and Remote Sensing Magazine, 2–41.
- Mokroš, M., Liang, X., Surový, P., Valent, P., Černava, J., Chudý, F. et al., 2018: Evaluation of Close-Range Photogrammetry Image Collection Methods for Estimating Tree Diameters. ISPRS International Journal of Geo-Information, 7:93.
- Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Węžyk, P. et al., 2021: Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation, 104.
- Nowak, D. J., Crane, D. E., Stevens, J. C., Hoehn, R. E., Walton, J. T., Bond, J., 2008: A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboriculture & Urban Forestry, 34:347–358.
- Hartzell, P., Dang, Z., Pan, Z., Glennie, C., 2018: Radio-metric Evaluation of an Airborne Single Photon Lidar Sensor. IEEE Geoscience and Remote Sensing Letters, 15:1466–1470.
- Oikawa, N., Nakagawa, Y., Owari, T., Tatsumi, S., Suzuki, S. N., 2025: Utilising LiDAR-equipped iPhone in forestry: Constructing 3D models and measuring tree sizes in a planting site. Ecological Solutions and Evidence, 6:e12399.
- Piermattei, L., Karel, W., Wang, D., Wieser, M., Mokroš, M., Surový, P. et al., 2019: Terrestrial structure from motion photogrammetry for deriving forest inventory data. Remote Sensing, 11:950.
- Pu, R., Landry, S., 2012: A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment, 124:516–533.
- Qian, C., Liu, H., Tang, J., Chen, Y., Kaartinen, H., Kukko, A. et al., 2017: An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping. Remote Sensing, 9:1–16.
- Richardson, J., Isebrands, J. G., 2013: Poplars and Willows: Trees for Society and the Environment. Proceedings of the 13th North American Agroforestry Conference, June 19–21, 2013, Charlottetown, Prince Edward Island, Canada, p. 35–37.
- Ritter, T., Gollob, C., Nothdurft, A., 2020: Towards an Optimization of Sample Plot Size and Scanner Position Layout for Terrestrial Laser Scanning in Multi-Scan Mode. Forests, 11:1099.
- Roberts, J., Koeser, A., Abd-Elrahman, A., Wilkinson, B., Hansen, G., Landry, S. et al., 2019: Mobile Terrestrial Photogrammetry for Street Tree Mapping and Measurements. Forests, 10:701.
- Schmohl, S., Narváez Vallejo, A., Soergel, U., 2022: Individual Tree Detection in Urban ALS Point Clouds with 3D Convolutional Networks. Remote Sensing, 14:1317.
- Shahtahmassebi, A. R., Li, C., Fan, Y., Wu, Y., Gan, M., Wang, K. et al., 2021: Remote sensing of urban green spaces: A review. Urban Forestry & Urban Greening, 57:126946.
- Shekhar, S., Aryal, J., 2019: Role of geospatial technology in understanding urban green space of Kalaburagi city for sustainable planning. Urban Forestry & Urban Greening, 46:126450.
- Skladan, M., Chudá, J., Singh, A., Masný, M., Lieskovský, M., Pástor, M. et al., 2025: Choosing the right close-range technology for measuring DBH in fast-growing trees plantations. Trees, Forests and People, 19:100747.
- Tang, L., He, J., Peng, W., Huang, H., Chen, C., Yu, C., 2023: Assessing the visibility of urban greenery using MLS LiDAR data. Landscape and Urban Planning, 232:104662.
- Tatsumi, S., Yamaguchi, K., Furuya, N., 2023. ForestS-canner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods in Ecology and Evolution, 14:1603–1609.
- Tomaštík, J., Mokroš, M., Saloň, Š., Chudý, F., Tunák, D., 2017: Accuracy of Photogrammetric UAV-Based Point Clouds under Conditions of Partially-Open Forest Canopy. Forests, 8:151.
- Torkan, M., Janiszewski, M., Uotinen, L., Rinne, M., 2023: Method to Obtain 3D Point Clouds of Tunnels Using Smartphone LiDAR and Comparison to Photogrammetry. IOP Conference Series: Earth and Environmental Science, 1124:012016.
- Wang, X., Singh, A., Pervysheva, Y., Lamatungga, K. E., Murtinová, V., Mukarram, M. et al., 2021: Evaluation of iPad Pro 2020 LiDAR for estimating tree diameters in urban forest. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, VIII-4:105–110.
- Wang, X., Wu, C., 2020: An Observational Study of Park Attributes and Physical Activity in Neighborhood Parks of Shanghai, China. International Journal of Environmental Research and Public Health, 17:2080.
- Wang, X., Rahman, M. A., Mokroš, M., Rötzer, T., Pattnaik, N., Pang, Y. et al., 2023: The influence of vertical canopy structure on the cooling and humidifying urban microclimate during hot summer days. Landscape and Urban Planning, 238:104841.
- Wujanz, D., Avian, M., Krueger, D., Neitzel, F., 2018: Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring. Earth Surface Dynamics, 6:303–317.
- Zięba-Kulawik, K., Skoczylas, K., Wężyk, P., Teller, J., Mustafa, A., Omrani, H., 2021: Monitoring of urban forests using 3D spatial indices based on LiDAR point clouds and voxel approach. Urban Forestry & Urban Greening, 65:127324.
- R Core Team, 2024: R: A language and environment for statistical computing (version 4.3.2). R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.
