Have a personal or library account? Click to login

Assessing the effect of cork oak fertigation on crown and root structure using electro-magnetic tracking system

Open Access
|May 2025

References

  1. Ägren, G. I., Franklin, O., 2003: Root: shoot ratios, optimization and nitrogen productivity. Annals of Botany, 92:795–800.
  2. Camilo-Alves, C., da Clara, M. I. E., de Almeida Ribeiro, N. M. C., 2013: Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132:411–432.
  3. Camilo-Alves, C., Dinis, C., Vaz, M., Barroso, J. M., 2020a: Irrigation of young cork oaks under field conditions-testing the bestwater volume. Forests, 11:88.
  4. Camilo-Alves, C., Saraiva-Dias, S., Dinis, C., Felix, M. R., Carla Varandas, C., de Almeida Ribeiro, N., 2020b: Modeling Diachronic Cork Oak Dieback–Comparison of Two Case Studies. FORMATH 19.
  5. Camilo-Alves, C., Nunes, J. A., Poeiras, A. P., Ribeiro, J., Dinis, C., Barroso, J. et al., 2022: Influence of water and nutrients on cork oak radial growth – looking for an efficient fertirrigation regime. Silva Fennica, 56:10698.
  6. Chirino, E., Vilagrosa, A., Hernández, E. I., Matos, A., Vallejo, V. R., 2008: Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. Forest Ecology and Management, 256:779–785.
  7. Danjon, F., Danjon, F., Sinoquet, H., Godin, C., Colin, F., Drexhage, M., 1999: Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant and Soil, 211:241–258.
  8. David, T. S., Henriques, M. O., Kurz-Besson, C., Nunes, J., Valente, F., Vaz, M. et al., 2007: Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiology, 27:793–803.
  9. Dawson, T. E., 1996: Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiology, 16:263–272.
  10. Dinis, C., 2014: Cork oak (Quercus suber L.) root system: a structural-functional 3D approach. PhD diss., Portugal, Universidade de Evora, 128 p.
  11. Dinis, C., Surovy, P., Ribeiro, N. A., Machado, R., Oliveira, M. R., 2015a: Cork oak seedling growth under different soil conditions from fertilisation, mycorrhizal fungi and amino acid application. Journal of Agricultural Science, 8:55–67.
  12. Dinis, C., Surový, P., Ribeiro, N., Oliveira, M. R. G., 2015b: The effect of soil compaction at different depths on cork oak seedling growth. New Forests, 46:235–246.
  13. Dinis, C., Camilo-Alves, C., Vaz, M., Almeida Ribeiro, N., 2018: Ripping Plantation Lines Improves Deep Root Development of Container-Grown Cork-Oak Seedlings. World Congress Silvo Pastoral Systems, Portugal, Evora.
  14. Disante, K. B., Fuentes, D., Cortina, J., 2011: Response to drought of Zn-stressed Quercus suber L. seedlings. Environmental and Experimental Botany, 70:96–103.
  15. Ericsson, T., 1995: Growth and shoot: root ratio of seedlings in relation to nutrient availability. Springer Netherlands, 10:205–214.
  16. Ford, R., Ford, E. D., 1990: Structure and Basic Equations of a Simulator for Branch Growth in the Pinaceaet. Journal of Theoretical Biology, 146:1–13.
  17. Gavrikov, V. L., Sekretenko, O. P., 1996: Shoot-based three-dimensional model of young Scots pine growth. Ecological Modelling, 88:183–193.
  18. Hansson, K., Fröberg, M., Helmisaari, H. S., Kleja, D. B., Olsson, B. A., Olsson, M. et al., 2013: Carbon and nitrogen pools and fluxes above and below ground in spruce, pine and birch stands in southern Sweden. Forest Ecology and Management, 309:28–35.
  19. Kellomäki, S., Strandman, H., 1995: A model for the structural growth of young Scots pine crowns based on light interception by shoots. Ecological Modelling, 80:237–50.
  20. Kellomäki, S., Ikonen, V. P., Peltola, H., Kolströ, T., 1999: Modelling the structural growth of Scots pine with implications for wood quality. Ecological Modelling, 122:117–134.
  21. Kent, J. T., Hamelryck, T., 2005: Using the Fisher-Bingham distribution in stochastic models for protein structure. Quantitative Biology, Shape Analysis, and Wavelets, 24:57–60.
  22. Lozano, Y. M., Aguilar-Trigueros, C. A., Flaig, I. C., Rillig, M., 2020: Root trait responses to drought are more heterogeneous than leaf trait responses. Functional Ecology, 34:2224–2235.
  23. Martínez De Arano, I., Maltoni, S., Picardo, A., Mutke, S., 2021: Non-wood forest products for people, nature and the green economy. Recommendations for policy priorities in Europe. A white paper based on lessons learned from around the Mediterranean. Barcelona, EFI and FAO. Available at https://doi.org/10.36333/k2a05.
  24. Morillas, L., Leiva, M. J., Pérez-Ramos, I. M., Cambrollé, J. et al., 2023: Latitudinal variation in the functional response of Quercus suber seedlings to extreme drought. Science of the Total Environment, 887.
  25. Mutke, S., Sievänen, R., Nikinmaa, E., Perttunen, J., Gil, L., 2005: Crown architecture of grafted Stone pine (Pinus pinea L.): Shoot growth and bud differentiation. Trees – Structure and Function, 19:15–25.
  26. Nardini, A., Lo Gullo, M. A., Salleo, S., 1999: Competitive strategies for water availability in two Mediterranean Quercus species. Plant, Cell & Environment, 22:109–116.
  27. Noguchi, K., Nagakura, J., Konôpka, B., Sakata, T., Kaneko, S., Takahashi, M., 2013: Fine-root dynamics in sugi (Cryptomeria japonica) under manipulated soil nitrogen conditions. Plant and Soil, 364:159–169.
  28. Otieno, D. O., Liu, J., Schmidt, M. W. T., Vale-Lobo, David, T. S., Siegwolf, R. et al., 2006: Seasonal variations in soil and plant water status in a Quercus suber L. stand: roots as determinants of tree productivity and survival in the Mediterranean-type ecosystem. Plant and Soil, 283:119–135.
  29. Pardos, M., Pardos, J. A., Montero, G., 2001: Growth Responses of Chemically Root-pruned Cork Oak Seedlings in the Nursery. Journal of Environmental Horticulture, 19:69–72.
  30. Pereira H., 2007: Cork: biology, production and uses. Lisboa. Elsevier, 336 p.
  31. Ribeiro, J., Camilo-Alves, C, Ribeiro, N. A., 2024: The protective role of canopy cover against cork oak decline in the face of climate change. Central European Forestry Journal, 70:133–143.
  32. Sievänen, R., Nikinmaa, E., Nygren, P., Ozier-Lafontaine, H., Perttunen, J., Hakula, H., 2000: Components of functional-structural tree models. Annals of Forest Science, 57:399–412.
  33. Sinoquet, H., Rivet, P., 1997: Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitising device. Trees, 11:265–270.
  34. Šleglová, K., Brichta, J., Bílek, L., Surový, P., 2024: Measuring the Canopy Architecture of Young Vegetation Using the Fastrak Polhemus 3D Digitizer. Sensors, 24:109.
  35. Tfwala, C. M., Van Rensburg, L. D., Schall, R., Zietsman, P. C., Dlamini, P., 2019: Whole tree water use: Effects of tree morphology and environmental factors. Ecological Indicators, 102:366–373.
  36. Tsakaldimi, M., Zagas, T., Tsitsoni, T., Ganatsas, P., 2005: Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant and Soil, 278:85–93.
  37. Vertessy, R. A., Benyon, R. G., O’sullivan, S. K., Gribben, P. R., 1995: Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 15:559–567.
  38. Vertessy, R. A., Hatton, T. J., Reece, P., O’sullivan, S. K., Benyon, R. G., 1997: Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physiology, 17:747–756.
  39. Watanabe, T., Hanan, J. S., Room, P. M., Hasegawa, T., Nakagawa, H., Takahashi, W., 2005: Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural modelling. Annals of Botany, 95:1131–1143.
  40. White J., 1979: The plant as a metapopulation. Annual Review of Ecology and Systematics, 10:109–145.
  41. Wiklund, K., Konôpka, B., Nilsson, L. O., 1995: Stem form and growth in Pice abies [L.] Karst. in response to water and mineral nutrient availability. Scandinavian Journal of Forest Research, 10:326–332.
  42. Wilson, J. B., 1988: A review of evidence on the control of shoot: root ratio, in relation to models. Annals of botany, 61:433–449.
  43. Yoshimoto, A., Surový, P., Konoshima, M., Kurth, W., 2014: Constructing tree stem form from digitized surface measurements by a programming approach within discrete mathematics. Trees – Structure and Function, 28:1577–1588.
  44. Zhou, M., Wang, J., Bai, W., Zhang, Y., Zhang, W. H., 2019: The response of root traitsto precipitation changes of herbaceous species in temperate steppes. Functional Ecology, 33:2030–2041.
  45. APCOR, 2020: Associação Portuguesa de Cortiça, Associação Portuguesa de Cortiça. (In Portuguese). Colchester, G., 2012: Polhemus Inc. 3SPACE® FASTRAK® user manual. Polhemus, 124 p.
  46. ICNF, 2015: 6 Inventário Florestal Nacional. Relatório Final. Instituto de Canservacao da Natureza e das Flarestas, Lisboa, 284 p. (In Portuguese).
DOI: https://doi.org/10.2478/forj-2024-0029 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 132 - 144
Published on: May 23, 2025
Published by: National Forest Centre – Forest Research Institute Zvolen
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Kristýna Šleglová, Constança Camilo-Alves, Nuno Almeida Ribeiro, Ana Poeiras, José António Nunes, Peter Surový, published by National Forest Centre – Forest Research Institute Zvolen
This work is licensed under the Creative Commons Attribution 4.0 License.