Abdollahnejad, A., Panagiotidis, D., 2020: Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multi-spectral Imaging. Remote Sensing, 12:3722.
Abdollahnejad, A., Panagiotidis, D., Surovy, P., Mod-linger, R., 2021: Investigating the Correlation between Multisource Remote Sensing Data for Predicting Potential Spread of Ips typographus L. Spots in Healthy Trees. Remote Sensing, 13:4953.
Abdullah, H., Darvishzadeh, R., Skidmore, A., Groen, T., Heurich, M., 2018: European spruce bark beetle (Ips typographus L.) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation, 64:199–209.
Adrien, M., Piégay, H., Lisein, J., Claessens, H., Lejeune, P., 2016: Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from Unmanned Aerial System. Environmental Monitoring and Assessment, 188:146.
Ahmed, S., Nicholson, C. E., Muto, P., Perry, J., Dean, J., 2021: Applied aerial spectroscopy: A case study on remote sensing of an ancient and semi-natural woodland. PLoS ONE, 16:e0260056.
Algeet Abarquero, N., Guillen-Climent, M., Mas, H., Tomé, J., Fernández-Landa, A., 2020: Using hipersepctral images for decay detection in Pinus halepensis (Mill.) in the Mediterranean forest. Revista de Teledetección, 55:59–69.
Ali, A. M., Abdullah, H., Darvishzadeh, R., Skidmore, A. K., Heurich, M., Roeoesli, C. et al., 2021: Canopy chlorophyll content retrieved from time series remote sensing data as a proxy for detecting bark beetle infestation. Remote Sensing Applications: Society and Environment, 22:100524.
Allen, B., Dalponte, M., Ørka, H., Næsset, E., Puliti, S., Astrup, R. et al., 2022: UAV-Based Hyperspectral Imagery for Detection of Root, Butt, and Stem Rot in Norway Spruce. Remote Sensing, 14:3830.
Andrija, K., Linardić, D., Pernar, R., 2021: Framework for Spatial and Temporal Monitoring of Urban Forest and Vegetation Conditions: Case Study Zagreb, Croatia. Sustainability, 13:6055.
Ariza Salamanca, A., Navarro-Cerrillo, Bonet-García, Palazón, Polo, M. J., 2019: Integration of a Landsat Time-Series of NBR and Hydrological Modeling to Assess Pinus pinaster Aiton. Forest Defoliation in South-Eastern Spain. Remote Sensing, 11:2291.
Avetisyan, D., Borisova, D., Velizarova, E., 2021. Integrated Evaluation of Vegetation Drought Stress through Satellite Remote Sensing. Forests, 12:974.
Baders, E., Romāns, E., Desaine, I., Krisans, O., Seipulis, A., Donis, J. et al., 2022, An Integration of Linear Model and ‘Random Forest’ Techniques for Prediction of Norway Spruce Vitality: A Case Study of the Hemiboreal Forest, Latvia. Remote Sensing, 14:2122.
Balazy, R., Ciesielski, M., Waraksa, P., Zasada, M., Zawiła-Niedźwiecki, T., 2019a: Deforestation Processes in the Polish Mountains in the Context of Terrain Topography. Forests, 10:1027.
Balazy, R., Hycza, T., Kamińska, A., Osińska-Skotak, K., 2019b: Factors Affecting the Health Condition of Spruce Forests in Central European Mountains-Study Based on Multitemporal RapidEye Satellite Images. Forests, 10:943.
Barka, I., Lukeš, P., Bucha, T., Hlásny, T., Strejček, R., Mlčoušek, M. et al., 2018: Remote sensing-based forest health monitoring systems-case studies from Czechia and Slovakia. Central European Forestry Journal, 64:259–275.
Barmpoutis, P., Stathaki, T., Kamperidou, V., 2019: Monitoring of Trees’ Health Condition Using a UAV Equipped with Low-cost Digital Camera. ICASSP 2019-2019 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP). Brighton, UK, p. 8291–8295.
Bárta, V., Lukeš, P., Homolova, L., 2021: Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 100:102335.
Blaga, L., Josan, I., Herman, G., Grama, V., Nistor, S., Suba, N.-S., 2019: Assessment of the Forest Health Through Remote Sensing Techniques in Valea Roşie Natura 2000 Site, Bihor County, Romania. Journal of Applied Engineering Sciences, 9:207–215.
Briechle, S., Krzystek, P., Vosselman, G., 2021: Silvi-Net – A dual-CNN approach for combined classification of tree species and standing dead trees from remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 98:102292.
Brovkina, O., Cienciala, E., Zemek, F., Lukeš, P., Fabiánek, T., Russ, R., 2017: Composite indicator for monitoring of Norway spruce stand decline. European Journal of Remote Sensing, 50:550–563.
Brovkina, O., Cienciala, E., Surovy, P., Janata, P., 2018: Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands. Geo-Spatial Information Science, 21:12–20.
Bryk, M., Kołodziej, B., Pliszka, R., 2021: Changes of Norway Spruce Health in the Białowieża Forest (CE Europe) in 2013–2019 during a Bark Beetle Infestation, Studied with Landsat Imagery. Forests, 12:34.
Buras, A., Rammig, A., Zang, C., 2020: Quantifying impacts of the 2018 drought on European eco-systems in comparison to 2003. Biogeosciences, 17:1655–1672.
Camino, C., Araño, K., Berni, J. A., Dierkes, H., Trapero-Casas, J. L., León-Ropero, G. et al., 2022: Detecting Xylella fastidiosa in a machine learning framework using Vcmax and leaf biochemistry quantified with airborne hyperspectral imagery. Remote Sensing of Environment, 282:113281.
Candotti, A., De Giglio, M., Dubbini, M., Tomelleri, E., 2022: A Sentinel-2 Based Multi-Temporal Monitoring Framework for Wind and Bark Beetle Detection and Damage Mapping. Remote Sensing, 14:6105.
Cârlan, I., Mihai, B.-A., Nistor, C., Große-Stoltenberg, A., 2020: Identifying urban vegetation stress factors based on open access remote sensing imagery and field observations. Ecological Informatics, 55:101032.
Chan, A., Barnes, C., Swinfield, T., Coomes, D., 2020: Monitoring ash dieback (Hymenoscyphus fraxineus) in British forests using hyperspectral remote sensing. Remote Sensing in Ecology and Conservation, 7:306–320.
Chaparro, D., Piles, M., Martinez Vilalta, J., Vall-llossera, M., Vayreda, J., Banqué-Casanovas, M. et al., 2018: Modelling Forest Decline Using Smos Soil Moisture and Vegetation Optical Depth. IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, p. 1459–1462.
Chi, D., Degerickx, J., Yu, K., Somers, B., 2020: Urban Tree Health Classification Across Tree Species by Combining Airborne Laser Scanning and Imaging Spectroscopy. Remote Sensing, 12:2435.
Cucca, B., Recanatesi, F., Ripa, M., 2020: Evaluating the Potential of Vegetation Indices in Detecting Drought Impact Using Remote Sensing Data in a Mediterranean Pinewood. In: Gervasi, O. et al. (eds.): Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, vol. 12253. Cham, Springer, p. 50–62.
Dalponte, M., Kallio, A., Ørka, H., Næsset, E., Gobakken, T., 2022: Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data. Remote Sensing, 14:1892.
Degerickx, J., Roberts, D., Mcfadden, J., Hermy, M., Somers, B., 2018: Urban tree health assessment using airborne hyperspectral and LiDAR imagery. International Journal of Applied Earth Observation and Geoinformation, 73:26–38.
Descals, A., Verger, A., Yin, G., Filella, I., Penuelas, J., 2022: Widespread drought-induced leaf shedding and legacy effects on productivity in European deciduous forests. Remote Sensing in Ecology and Conservation, 9:76–89.
Dimitrov, S., Georgiev, G., Georgieva, M., Gluschkova, M., Chepisheva, V., Mirchev, P. et al., 2018: Integrated assessment of urban green infrastructure condition in Karlovo urban area by in-situ observations and remote sensing. One Ecosystem, 3:e21610.
D’Odorico, P., Schönbeck, L., Vitali, V., Meusburger, K., Schaub, M., Ginzler, C. et al., 2021: Drone-based physiological index reveals long-term acclimation and drought stress responses in trees. Plant, Cell & Environment, 44:3552–3570.
Dotzler, S., Hill, J., Buddenbaum, H., Stoffels, J., 2015: The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sensing, 7:14227–14258.
Duarte, A., Acevedo Muñoz, L., Gonçalves, C., Mota, L., Sarmento, A., Silva, M. et al., 2020: Detection of Longhorned Borer Attack and Assessment in Eucalyptus Plantations Using UAV Imagery. Remote Sensing, 12:3153.
Einzmann, K., Atzberger, C., Pinnel, N., Glas, C., Böck, S., Seitz, R. et al., 2021: Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany. Remote Sensing of Environment, 266:112676.
El-Ghany, N., Abd El-Aziz, S., Marei, S., 2020: A review: application of remote sensing as a promising strategy for insect pests and diseases management. Environmental Science and Pollution Research, 27:33503–33515.
Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T. et al., 2016: Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment. 186: 64–87.
Fernandez-Carrillo, A., Patočka, Z., Dobrovolný, L., Franco-Nieto, A., Revilla-Romero, B., 2020: Monitoring Bark Beetle Forest Damage in Central Europe. A Remote Sensing Approach Validated with Field Data. Remote Sensing, 12:3634.
García-Montero, L., Pascual, C., Martin-Fernández, S., Sanchez-Paus Diaz, A., Patriarca, C., Martín-Ortega, P. et al., 2021: Medium- (MR) and Very-High-Resolution (VHR) Image Integration through Collect Earth for Monitoring Forests and Land-Use Changes: Global Forest Survey (GFS) in the Temperate FAO Ecozone in Europe (2000–2015). Remote Sensing, 13:4344.
Georgiev, G., Georgieva, M., Dimitrov, S., Iliev, M., Trenkin, V., Mirchev, P. et al., 2022: Remote Sensing Assessment of the Expansion of Ips typographus Attacks in the Chuprene Reserve,Western Balkan Range. Forests, 13:39.
Georgieva, M., Belilov, S., Dimitrov, S., Iliev, M., Trenkin, V., Mirchev, P. et al., 2022: Application of Remote Sensing Data for Assessment of Bark Beetle Attacks in Pine Plantations in Kirkovo Region, the Eastern Rhodopes. Forests, 13:620.
Guillen-Climent, M. L., Mas, H., Fernández-Landa, A., Algeet-Abarquero, N., Tomé J. L., 2020: Using hipersepctral images for decay detection in Pinus halepensis (Mill.) in the Mediterranean forest. Revista de Teledetección, 55:59–69.
Guerra, J., Díaz Varela, R., Ávarez-González, J., Rodríguez-González, P., 2021: Assessing a novel modelling approach with high resolution UAV imagery for monitoring health status in priority riparian forests. Forest Ecosystems, 8:61.
Hansen, M. C., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A. et al., 2013: High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342:850–853.
Hawryło, P., Bednarz, B., Wezyk, P., Szostak, M., 2018: Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. European Journal of Remote Sensing, 51:194–204.
Hernandez Clemente, R., North, P. R. J., Hornero, A., Zarco-Tejada, P., 2018: Monitoring Forest Health with Sun-Induced Chlorophyll Fluorescence Observations and 3-D Radiative Transfer Modeling. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, p. 5999–6002.
Ho, B., Kocer, B. B., Kovac, M., 2022: Vision based crown loss estimation for individual trees with remote aerial robots. ISPRS J. Photogramm. Remote Sensing, 188:75–88.
Holzwarth, S., Thonfeld, F., Abdullahi, S., Asam, S., Canova, E., Gessner, U. et al., 2020: Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sensing, 12:3570.
Hornero, A., Hernández-Clemente, R., North, P., Beck, P., Boscia, D., Navas-Cortés, J. A. et al., 2020: Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling. Remote Sensing of Environment, 236:111480.
Hornero, A., Zarco-Tejada, P., Quero, J., North, P. R. J., Francisco José, R.-G., Sánchez-Cuesta, R. et al., 2021: Modelling hyperspectral- and thermal-based plant traits for the early detection of Phytophthora-induced symptoms in oak decline. Remote Sensing of Environment, 263:112570.
Huo, L., Lindberg, E., Persson, H., 2020: Normalized Projected Red & SWIR (NPRS): A New Vegetation Index for Forest Health Estimation and Its Application on Spruce Bark Beetle Attack Detection. IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, p. 4618–4621.
Huo, L., Persson, H., Lindberg, E., 2021. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sensing of Environment, 255:112240.
Jafarbiglu, H., Pourreza, A., 2022: A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. Computers and Electronics in Agriculture, 197:106844.
Junttila, S., Näsi, R., Koivumäki, N., Imangholiloo, M., Saarinen, N., Raisio, J. et al., 2022: Multispectral Imagery Provides Benefits for Mapping Spruce Tree Decline Due to Bark Beetle Infestation When Acquired Late in the Season. Remote Sensing, 14:909.
Kälin, U., Lang, N., Hug, C., Gessler, A., Wegner, J., 2019: Defoliation estimation of forest trees from ground-level images. Remote Sensing of Environment, 223:143–153.
Kamińska, A., Lisiewicz, M., Stereńczak, K., Kraszewski, B., Sadkowski, R., 2018: Species-related single dead tree detection using multi-temporal ALS data and CIR imagery. Remote Sensing of Environment, 219:31–43.
Kamińska, A., 2023: Spatial autocorrelation based on remote sensing data in monitoring of Norway spruce dieback caused by the European spruce bark beetle Ips typographus L. in the Białowieża Forest. Sylwan, 166:719–732.
Kampen, M., Lederbauer, S., Mund, J.-P., Immitzer, M., 2019: UAV-Based Multispectral Data for Tree Species Classification and Tree Vitality Analysis. Conference: Dreiländertagung der DGPF, der OVG und der SGPF in Wien, Österreich – Publikation der DGPF, Band 28, 2019, p. 623–639.
Kanerva, H., Honkavaara, E., Näsi, R., Hakala, T., Junttila, S., Karila, K. et al., 2022: Estimating Tree Health Decline Caused by Ips typographus L. from UAS RGB Images Using a Deep One-Stage Object Detection Neural Network. Remote Sensing, 14:6257.
Katkovsky, L., Beliaev, B., Siliuk, V., Beliaev, M., Sarmin, E., Davidovich, Y., 2020: Remote spectral methods for detecting stress coniferous. E3S Web of Conferences, 223:02004.
Klouček, T., Komarek, J., Surovy, P., Hrach, K., Janata, P., Vašíček, B., 2019: The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle Infestation. Remote Sensing, 11:1561.
Kotlarz, J., Kubiak, K., Spiralski, M., 2022: Monitoring Effects of Drought on Nitrogen and Phosphorus in Temperate Oak Forests Using Machine Learning Techniques. Polish Journal of Environmental Studies, 31:1137–1151.
Laštovička, J., Švec, P., Paluba, D., Kobliuk, N., Svoboda, J. et al., 2020: Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sensing, 12:1914.
Lausch, A., Erasmi, S., King, D. J., Magdon, P., Heurich, M., 2016: Understanding Forest Health with Remote Sensing -Part I – A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sensing, 8:1029.
Lausch, A., Erasmi, S., King, D. J., Magdon, P., Heurich, M., 2017: Understanding Forest Health with Remote Sensing-Part II – A Review of Approaches and Data Models. Remote Sensing, 9:129.
Lausch, A., Borg, E., Bumberger, J., Dietrich, P., Heu-rich, M., Huth, A. et al., 2018: Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sensing, 10:1120.
Liu, X., Frey, J., Denter, M., Zielewska-Büttner, K., Still, N., Koch, B., 2021: Mapping standing dead trees in temperate montane forests using a pixel- and object-based image fusion method and stereo WorldView-3 imagery. Ecological Indicators, 133:108438.
Liu, X., Neigh, C. S. R., Pardini, M., Forkel, M., 2024: Estimating forest height and above-ground biomass in tropical forests using P-band TomoSAR and GEDI observations. International Journal of Remote Sensing, 45:3129–3148.
Lukeš, P., 2021: Monitoring of Bark Beetle Forest Damages. In: Södergård, C., Mildorf, T., Habyarimana, E., Berre, A. J., Fernandes, J. A., Zinke-Wehlmann, C. (eds): Big Data in Bioeconomy. Cham, Springer, pp. 351–361.
Maltezos, E., Grammalidis, N., Katagis, T., Gitas, I. Z., Charalampopoulou, V. (Betty), 2019: Development of automated workflows (spatial models) for forest monitoring with the use of time-series of multispectral optical and SAR data. In: Papadavid, G., Themistocleous, K., Michaelides, S., Ambrosia, V., Hadjimitsis, D. G. (eds.): Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019). Presented at the Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), SPIE, Paphos, Cyprus, p. 60.
Marx, A., Tetteh, G. O., 2017: A Forest Vitality and Change Monitoring Tool Based on RapidEye Imagery. IEEE Geoscience and Remote Sensing Letters, 14:801–805.
Migas-Mazur, R., Kycko, M., Zwijacz-Kozica, T., Zagajewski, B., 2021: Assessment of Sentinel-2 Images, Support Vector Machines and Change Detection Algorithms for Bark Beetle Outbreaks Mapping in the Tatra Mountains. Remote Sensing, 13:3314.
Minařík, R., Langhammer, J., 2016: Use of a Multispectral UAV Photogrammetry for Detection and Tracking of Forest Disturbance Dynamics. ISPRS – Int. Arch. Photogramm. Remote Sensing and Spatial Information Sciences, XLI-B8:711–718
Moher, D., Liberati, A., Tetzlaff, J., Altman, D., The PRISMA Group, 2009: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Journal of Clinical Epidemiology, 62:1006–1012.
Moreno-Fernández, D., Viana-Soto, A., Camarero, J., Zavala, M., Tijerin-Triviño, J., García, M., 2021: Using spectral indices as early warning signals of forest dieback: The case of drought-prone Pinus pinaster forests. Science of The Total Environment, 793:148578.
Moreno-Fernández, D., Camarero, J., García, M., Lines, E., Sánchez-Dávila, J., Tijerin-Triviño, J. et al., 2022: The Interplay of the Tree and Stand-Level Processes Mediate Drought-Induced Forest Dieback: Evidence from Complementary Remote Sensing and Tree-Ring Approaches. Ecosystems, 25:1738–1753.
Näsi, R., Honkavaara, E., Blomqvist, M., Paivi, L.-S., Hakala, T., Viljanen, N. et al., 2018: Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban Forestry & Urban Greening, 30:72–83.
Navarro Cerrillo, R., Varo, M., Acosta, C., Palacios, G., Sánchez-Cuesta, R., Francisco José, R.-G., 2019: Integration of WorldView-2 and airborne laser scanning data to classify defoliation levels in Quercus ilex L. Dehesas affected by root rot mortality: Management implications. Forest Ecology and Management, 451:117564.
Navrozidis, I., Alexandridis, T., Moshou, D., Haugommard, A., Lagopodi, A., 2022: Implementing Sentinel-2 Data and Machine Learning to Detect Plant Stress in Olive Groves. Remote Sensing, 14:5947.
Navrozidis, I., Mourelatos, S., Nieto, F., Alexandridis, T., Moshou, D., Pantazi, X. et al., 2019: Olive Trees Stress Detection Using Sentinel-2 Images. IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, pp. 7220–7223.
Nowakowska, J., Hsiang, T., Patynek, P., Stereńczak, K., Olejarski, I., Oszako, T., 2020: Health Assessment and Genetic Structure of Monumental Norway Spruce Trees during A Bark Beetle (Ips typographus L.) Outbreak in the Białowieża Forest District, Poland. Forests, 11:647.
Ogaya, R., Barbeta, A., Başnou, C., Penuelas, J., 2015: Satellite data as indicators of tree biomass growth and forest dieback in a Mediterranean holm oak forest. Annals of Forest Science, 72:135–144.
Ogaya, R., Daijun, L., Barbeta, A., Penuelas, J., 2020: Stem Mortality and Forest Dieback in a 20-Years Experimental Drought in a Mediterranean Holm Oak Forest. Frontiers in Forests and Global Change, 2:89.
Pardini, M., Armston, J., Qi, W., Lee, S. K., Tello, M., Cazcarra Bes, V. et al., 2019: Early Lessons on Combining Lidar and Multi-baseline SAR Measurements for Forest Structure Characterization. Surveys in Geophysics, 40:803–837.
Pérez-Romero, J., Navarro-Cerrillo, R. M., Palacios-Rodriguez, G., Acosta, C., Mesas-Carrascosa, F. J., 2019: Improvement of Remote Sensing-Based Assessment of Defoliation of Pinus spp. Caused by Thaumetopoea pityocampa Denis and Schiffermüller and Related Environmental Drivers in Southeastern Spain. Remote Sensing, 11:1736.
Peters, R., Miranda, J. C., Schönbeck, L., Nievergelt, D., Fonti, M., Saurer, M. et al., 2020: Tree physiological monitoring of the 2018 larch budmoth outbreak: preference for leaf recovery and carbon storage over stem wood formation in Larix decidua. Tree Physiology, 40:1697–1711.
Piedallu, C., Dallery, D., Bresson, C., Legay, M., Gégout, J.-C., Pierrat, R., 2022: Spatial vulnerability assessment of silver fir and Norway spruce dieback driven by climate warming. Landscape Ecology, 38:341–361.
Piragnolo, M., Pirotti, F., Zanrosso, C., Lingua, E., Grigolato, S., 2021: Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS. Remote Sensing, 13:1541.
Pirotti, F. 2011: Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods. iForest – Biogeosciences and Forestry, 4:100–106.
Poblete, T., Navas Cortés, J., Camino, C., Calderón Madrid, R., Hornero, A., Gonzalez-dugo, V. et al., 2021: Discriminating Xylella fastidiosa from Verticillium dahliae infections in olive trees using thermal- and hyperspectral-based plant traits. ISPRS Journal of Photogrammetry and Remote Sensing, 179:133–144.
Prăvălie, R., Sirodoev, I., Nita, I.-A., Patriche, C., Dumitraşcu, M., Roşca, B. et al., 2022: NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecological Indicators, 136:108629.
Puletti, N., Mattioli, W., Bussotti, F., Pollastrini, M., 2019: Monitoring the effects of extreme drought events on forest health by Sentinel-2 imagery. Journal of Applied Remote Sensing, 13:1.
Recanatesi, F., Giuliani, C., Ripa, M., 2018: Monitoring Mediterranean Oak Decline in a Peri-Urban Protected Area Using the NDVI and Sentinel-2 Images: The Case Study of Castelporziano State Natural Reserve. Sustainability, 10:3308.
Recanatesi, F., Giuliani, C., Rossi, C., Ripa, M., 2019: A Remote Sensing-Assisted Risk Rating Study to Monitor Pinewood Forest Decline: The Study Case of the Castelporziano State Nature Reserve (Rome). In: Calabrò, F., Della Spina, L., Bevilacqua, C. (eds): New Metropolitan Perspectives. ISHT 2018. Smart Innovation, Systems and Technologies, vol 100. Cham, Springer, pp. 68–75.
Reiche, J., Hamunyela, E., Verbesselt, J., Hoekman, D. H., Herold, M., 2018: Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment, 204:147–161.
Rodes, M., Torres, P., García, M., 2021: Assessing tree decay in an urban park using PlanetScope images: the case of Cerro Almodovar Park. Proc. SPIE 11864, Remote Sensing Technologies and Applications in Urban Environments VI:118640L.
Romero-Ramirez, F., Navarro-Cerrillo, R., Varo, M., Quero, J., Doerr, S., Hernandez Clemente, R., 2018: Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data. International Journal of Applied Earth Observation and Geoinformation, 68:157–167.
Rullán, C., Olthoff, A., Pando, V., Pajares, J., Delgado, J., 2015: Remote monitoring of defoliation by the beech leaf-mining weevil Rhynchaenus fagi in northern Spain. Forest Ecology and Management, 347:200–208.
Safonova, A., Hamad, Y., Dmitriev, E., Georgiev, G., Trenkin, V., Georgieva, M. et al., 2021: Individual Tree Crown Delineation for the Species Classification and Assessment of Vital Status of Forest Stands from UAV Images. Drones, 5:77.
Santoro, M., Cartus, O., Wegmüller, U., Besnard, S., Carvalhais, N., Araza, A. et al., 2022: Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure. Remote Sensing of Environment, 279:113114.
Schratz, P., Muenchow, J., Iturritxa, E., Cortés, J., Bischl, B., Brenning, A., 2021: Monitoring Forest Health Using Hyperspectral Imagery: Does Feature Selection Improve the Performance of Machine-Learning Techniques? Remote Sensing, 13:4832.
Senf, C., Seidl, R., Poulter, B., 2021: Post-disturbance canopy recovery and the resilience of Europe’s forests. Global Ecology and Biogeography, 31:822–825.
Smigaj, M., Gaulton, R., Barr, S., Suarez Minguez, J., 2015: UAV-Borne Thermal Imaging for Forest Health Monitoring: Detection of Disease-Induced Canopy Temperature Increase. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3/W3:349–354.
Smigaj, M., Gaulton, R., Suárez, J. C., Barr, S. L., 2019: Canopy temperature from an Unmanned Aerial Vehicle as an indicator of tree stress associated with red band needle blight severity. Forest Ecology and Management, 433:699–708.
Solano, F., Di Fazio, S., Modica, G., 2019: A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards. International Journal of Applied Earth Observation and Geoinformation, 83:101912.
Stereńczak, K., Bartłomiej, K., Miłosz, M., Żaneta, P., 2017: Inventory of standing dead trees in the surroundings of communication routes – The contribution of remote sensing to potential risk assessment. Forest Ecology and Management, 402, 76–91.
Stereńczak, K., Mielcarek, M., Modzelewska, A., Kraszewski, B., Fassnacht, F., Hilszczański, J., 2019: Intra-annual Ips typographus outbreak monitoring using a multi-temporal GIS analysis based on hyperspectral and ALS data in the Białowieża Forests. Forest Ecology and Management, 442:105–116.
Stereńczak, K., Mielcarek, M., Kamińska, A., Kraszewski, B., Piasecka, Ż., Miścicki, S. et al., 2020: Influence of selected habitat and stand factors on bark beetle Ips typographus (L.) outbreak in the Białowieża Forest. Forest Ecology and Management, 459:117826.
Sturm, J., Santos, M., Schmid, B., Damm, A., 2022: Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought. Global Change Biology, 28:2956–2978.
Tilly, N., Reddig, F., Lussem, U., Bareth, G., 2020: First investigation of mediterranean oak tree vitality with high-resolution WorldView-3 data: Comparing ten vegetation indices and three machine learning classifiers. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020:1069–1076.
Thonfeld, F., Gessner, U., Holzwarth, S., Kriese, J., da Ponte, E., Huth, J. et al., 2022: A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. Remote Sensing, 14:562.
Torres, P., Rodes-Blanco, M., Viana-Soto, A., Nieto, H., García, M., 2021: The Role of Remote Sensing for the Assessment and Monitoring of Forest Health: A Systematic Evidence Synthesis. Forests, 12:1134. Trumbore, S., Brando, P., Hartmann, H., 2015: Forest health and global change. Science, 349:814–818.
Trujillo-Toro, J., Navarro Cerrillo, R., 2019: Analysis of Site-dependent Pinus halepensis Mill. Defoliation Caused by ‘Candidatus Phytoplasma pini’ through Shape Selection in Landsat Time Series. Remote Sensing, 11:1868.
Varo, M., Navarro Cerrillo, R., 2021: Stand Delineation of Pinus sylvestris L. Plantations Suffering Decline Processes Based on Biophysical Tree Crown Variables: A Necessary Tool for Adaptive Silviculture. Remote Sensing, 13:436.
Walshe, D., McInerney, D., Van De Kerchove, R., Goyens, C., Balaji, P., Byrne, K., 2019: Detecting nutrient deficiency in spruce forests using multispectral satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 86:101975.
Wu, D., Johansen, K., Phinn, S., Robson, A., Tu, Y.-H., 2020: Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns. International Journal of Applied Earth Observation and Geoinformation, 89:102091.
Wulder, M., White, J., Nelson, R., Næsset, E., Ørka, H., Coops, N. et al., 2012: LiDAR sampling for large-area forest characterization: a review. Remote Sensing of Environment, 121:196–209.
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E. et al., 2019: Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225:127–147.
Zagoranski, F., Pernar, R., Seletković, A., Ančić, M., Kolić, J., 2018: Monitoring the Health Status of Trees in Maksimir Forest Park Using Remote Sensing Methods. South-east European forestry, 9:81–87.
Zarco-Tejada, P., Hornero, A., Beck, P., Kattenborn, T., Kempeneers, P., Hernandez Clemente, R., 2019: Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote Sensing of Environment, 223:320–335.
Eichhorn, J., Roskams, P., Potočić, N., Timmermann, V., Ferretti, M., Mues, V. et al., 2020: Part IV: Visual Assessment of Crown Condition and Damaging Agents. In: UNECE ICP Forests Programme Coordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Eberswalde, Germany, Thünen Institute of Forest Ecosystems, 49 p. + Annex
European Commission, 2001: Directorate-General for Research and Innovation, EUR 19435 Satellite Based Environmental Monitoring of European Forests, Publications Office.
Michel, A., Kirchner, T., Prescher, A.-K., Schwärzel, K., 2022: Forest Condition in Europe: The 2022 Assessment. ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). Braunschweig, Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei.
Wellbrock, N., Eickenscheidt, N., Hilbrig, L., Dühnelt, P., Holzhausen, M., Bauer, A. et al., 2020: Thünen Working Paper 84: Leitfaden und Dokumentation zur Waldzustandserhebung in Deutschland. Braun-schweig, Thünen-Institut für Waldökosysteme, 97 p. (In German).