Have a personal or library account? Click to login
Effect of diurnal solar radiation regime and tree density on sap flow of Norway spruce (Picea abies [L.] Karst.) in fragmented stand Cover

Effect of diurnal solar radiation regime and tree density on sap flow of Norway spruce (Picea abies [L.] Karst.) in fragmented stand

Open Access
|May 2025

References

  1. Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 1998: Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper. Rome, FAO. 300:D05109.
  2. Ammer, C., 2019: Diversity and forest productivity in a changing climate. New Phytologist, 221:50−66.
  3. Ameye, M., Wertin, T. M., Bauweraerts, I., McGuire, M. A., Teskey, R. O., Steppe, K., 2012: The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres. New Phytologist, 196:448−461.
  4. Aussenac, G., 2000: Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Annals of Forest Science. 57:287−301.
  5. Bello, J., Vallet, P., Perot, T., Balandier, P., Seigner, V., Perret, S. et al., 2019: How do mixing tree species and stand density affect seasonal radial growth during drought events? Forest Ecology and Management, 432:436−445.
  6. Bhandari, S. K., Veneklaas, E. J., McCaw, L., Mazanec, R., Renton, M., 2021: Investigating the effect of neighbour competition on individual tree growth in thinned and unthinned eucalypt forests. Forest Ecology and Management, 499:119637.
  7. Bottero, A., D‘Amato, A. W., Palik, B. J., Bradford, J. B., Fraver, S., Battaglia, M. A. et al., 2017: Density--dependent vulnerability of forest ecosystems to drought. Journal of Applied Ecology, 54:1605−1614.
  8. Brodribb, T. J., McAdam, S. A. M., Jordan, G. J., Martins, S. C. V., 2014: Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proceedings of the National Academy of Sciences, 111:14489–14493.
  9. Brooks, J. R., Mitchell, A. K., 2011: Interpreting tree responses to thinning and fertilization using tree-ring stable isotopes. New Phytologist, 190:770−782.
  10. Brunner, I., Herzog, C., Dawes, M. A., Arend, M., Spe-risen, C., 2015: How tree roots respond to drought. Frontiers in Plant Science, 6:1−16.
  11. Buonanduci, M. S., Morris, J. E., Agne, M. C., Harvey, B. J., 2020: Neighborhood context mediates probability of host tree mortality in a severe bark beetle outbreak. Ecosphere, 11:e03236.
  12. Burgdorf, M., 2006: Xylem-Saftfluss und Sauerstoffversorgung im Stamm von Betula pendula. Dissertation. Düsseldorf, Heinrich-Heine-Universität, 205 p. (In German).
  13. Canham, C. D., LePage, P. T., Coates, K. D., 2004: A neighborhood analysis of canopy tree competition: Effects of shading versus crowding. Canadian Journal of Forest Research, 34:778−787.
  14. Casper, B. B., Jackson, R. B., 1997: Plant competition underground. Annual Reviews of Ecology, Evolution and Systematics, 28:545−570.
  15. Caudullo, G., Tinner, W., de Rigo, D., 2016: Picea abies in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (eds.): European atlas of forest tree species. Luxembourg, Publications Office of the European Union, pp. e012300+
  16. Cochard, H., Martin, R., Gross, P., Bogeat-Triboulot, M. B., 2000: Temperature effects on hydraulic conductance and water relations of Quercus robur L. Journal of Experimental Botany, 51:1255−1259.
  17. Crous, K. Y., Uddling, J., De Kauwe, M. G., 2022: Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. New Phytologist, 234:353−374.
  18. Cudlín, P., 2015: Evaluation of Norway spruce crown health condition. In: Jakuš, R., Cudlin, P., Slivinský, J., Mezei, P., Majdák, A., Blaženec, M. (eds.): Hodnotenie zdravotného stavu smreka vo vzťahu k náletu podkôrneho hmyzu a k odumieraniu lesa [1. vyd.]. Bratislava: Slovenská akadémia vied, Ústav ekológie lesa, p. 49−70. (In Slovak).
  19. Cudlín, P., Chmelíková, E., Moravec, I., 2017: Makroskopický popis stavu korun smrku ztepilého a jejich změn. In: Albrechtová et al. (eds.): Metody hodnocení fyziologického stavu smrkových porostů. Praha, Česká geografická společnost, p. 138−148. (In Czech).
  20. Čermák, J., Kučera, J., Nadezhdina, N., 2004: Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees − Structure and Function, 18:529−546.
  21. D‘Amato, A. W., Bradford, J. B., Fraver, S., Palik, B. J., 2013: Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23:1735−1742.
  22. Deutscher, J., Kupec, P., Dundek, P., Holík, L., Machala, M., Urban, J., 2016: Diurnal dynamics of streamflow in an upland forested micro-watershed during short precipitation-free periods is altered by tree sap flow. Hydrological Processes, 30:2042−2049.
  23. Eastham, J., Rose, C. W., Charles-Edwards, D. A., Cameron, D. M., Rance, S. J., 1990: Planting density effects on water use efficiency of trees and pasture in an agro-forestry experiment. New Zealand Journal of Forestry Science, 20:39−53.
  24. Ebner, G., 2020: Significantly more damaged wood in 2019. Available at https://treefrogcreative.ca/significantly-more-damaged-wood-in-2019-in-central--europe-and-italy/.
  25. Emmel, C., Paul-Limoges, E., Black, T. A., Christen, A., 2013: Vertical distribution of radiation and energy balance partitioning within and above a lodgepole pine stand recovering from a recent insect attack. Boundary-Layer Meteorology, 149:133−163.
  26. Erbilgin, N., Zanganeh, L., Klutsch, J. G., Chen, S. H., Zhao, S., Ishangulyyeva, G. et al., 2021: Combined drought and bark beetle attacks deplete non-structural carbohydrates and promote death of mature pine trees. Plant Cell & Environment. 44:3866−81.
  27. Fettig, C. J., Gibson, K. E., Munson, A. S., Negrón, J. F., 2014: Cultural practices for prevention and mitigation of mountain pine beetle infestations. Forest Science, 60:450−463.
  28. Gabira, M. M., Girona, M. M., DesRochers, A., Kratz, D., da Silva, R. B. G., Duarte, M. M. et al., 2023: The impact of planting density on forest monospecific plantations: An overview. Forest Ecology and Management, 534:120882.
  29. Gartner, K., Nadezhdina, N., Englisch, M., Čermak, J., Leitgeb, E., 2009: Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. Forest Ecology and Management, 258:590−599.
  30. Goudriaan, J., Monteith, J. L., 1990: A mathematical function for crop growth based on light interception and leaf area expansion. Annals of Botany, 66:695−701.
  31. Hanewinkel, M., Breidenbach, J., Neeff, T., Kublin, E., 2008: Seventy-seven years of natural disturbances in a mountain forest area − The influence of storm, snow, and insect damage analysed with a long-term time series. Canadian Journal of Forest Research, 38:2249−2261.
  32. Herbst, M., Roberts, J. M., Rosier, P. T. W., Taylor, M. E., Gowing, D. J., 2007: Edge effects and forest water use: A field study in a mixed deciduous woodland. Forest Ecology and Management, 250:176−186.
  33. Herms, D. A., Mattson, W. J., 1992: The dilemma of plants: To grow or defend. The Quarterly Review of Biology, 67:283−335.
  34. Hietz, P., Baier, P., Offenthaler, I., Fuhrer, E., Rosner, S., Richter, H., 2005: Tree temperatures, volatile organic emissions, and primary attraction of bark beetles. Phyton − Annales Rei Botanicae, 45:341.
  35. Hlásny, T., Krokene, P., Liebhold, A., Montagné-Huck, C., Müller, J., Qin, H. et al., 2019: Living with bark beetles: impacts, outlook and management options. European Forest Institute. 52 p.
  36. Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., Turčáni, M., 2021: Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490:119075.
  37. Horgan, T., Keane, M., McCarthy, R., Lally, M., Thompson, D., O‘Carroll, J., 2003: A guide to forest tree species selection and silviculture in Ireland. Dublin, National Council for Forest Research and Development (COFORD), 255 p.
  38. Inoue, S. I., Kinoshita, T., 2017: Blue light regulation of stomatal opening and the plasma membrane H+--ATPase. Plant Physiology, 174:531−538.
  39. Jakuš, R., Edwards-Jonášová, M., Cudlín, P., Blaženec, M., Ježík, M., Havlíček, F. et al., 2011: Characteristics of Norway spruce trees (Picea abies) surviving a spruce bark beetle (Ips typographus L.) outbreak. Trees-Structure and Function, 25:965−973.
  40. Jia, Q., Wang, Y. P., 2021: Relationships between leaf area index and evapotranspiration and crop coefficient of hilly apple orchard in the Loess Plateau. Water, 13:1957.
  41. Jones, C. G., Hartley, S. E., 1999: A Protein Competition Model of Phenolic Allocation. Oikos, 86:27.
  42. Jones, H. G., 2013: Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge, Cambridge university press, 407 p.
  43. Kautz, M., Schopf, R., Ohser, J., 2013: The „sun-effect“: microclimatic alterations predispose forest edges to bark beetle infestations. European Journal of Forest Research, 132:453−465.
  44. Kholdaenko, Y. A., Belokopytova, L. V., Zhirnova, D. F., Upadhyay, K. K., Tripathi, S. K., Koshurnikova, N. N. et al., 2022: Stand density effects on tree growth and climatic response in Picea obovata Ledeb. plantations. Forest Ecology and Management, 519:120349.
  45. Kholdaenko, Y. A., Babushkina, E. A., Belokopytova, L. V., Zhirnova, D. F., Koshurnikova, N. N., Yang, B. et al., 2023: The more the merrier or the fewer the better fare? Effects of stand density on tree growth and climatic response in a scots pine plantation. Forests, 14:915.
  46. Korolyova, N., Buechling, A., Ďuračiová, R., Zabihi, K., Turčáni, M., Svoboda, M. et al., 2022a: The Last Trees Standing: Climate modulates tree survival factors during a prolonged bark beetle outbreak in Europe. Agricultural and Forest Meteorology, 322:109025.
  47. Korolyova, N., Buechling, A., Lieutier, F., Yart, A., Cudlín, P., Turčáni, M. et al., 2022b: Primary and secondary host selection by Ips typographus depends on Norway spruce crown characteristics and phenolic--based defenses. Plant Science, 321:111319.
  48. Latham, P., Tappeiner, J., 2002: Response of old-growth conifers to reduction in stand density in western Oregon forests. Tree Physiology, 22:137–146.
  49. Lagergren, F., Lindroth, A., 2004: Variation in sap-flow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden. Forest Ecology and Management, 188:51−63.
  50. Lagergren, F., Lankreijer, H., Kučera, J., Cienciala, E., Mölder, M., Lindroth, A., 2008: Thinning effects on pine-spruce forest transpiration in central Sweden. Forest Ecology and Management, 255:2312−2323.
  51. Liu, C. L. C., Kuchma, O., Krutovsky, K. V., 2018: Mixed--species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 15:e00419.
  52. Marešová, J., Majdák, A., Jakuš, R., Hradecký, J., Kali-nová, B., Blaženec, M., 2020: The short-term effect of sudden gap creation on tree temperature and volatile composition profiles in a Norway spruce stand. Trees − Structure and Function, 34:1397−1409.
  53. Matthews, J. S. A., Vialet-Chabrand, S., Lawson, T., 2020: Role of blue and red light in stomatal dynamic behaviour. Journal of Experimental Botany, 71:2253−2269.
  54. Mezei, P., Grodzki, W., Blaženec, M., Jakuš, R., 2014: Factors influencing the wind-bark beetles‘ disturbance system in the course of an Ips typographus outbreak in the Tatra Mountains. Forest Ecology and Management, 312:67−77.
  55. Mikita, T., Patočka, Z., Avoiani, E., 2023: Sap flow modelling based on global radiation and canopy parameters derived from a digital surface model. Journal of Forest Science, 69:348−359.
  56. Netherer, S., Matthews, B., Katzensteiner, K., Blackwell, E., Henschke, P., Hietz, P. et al., 2014: Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytologist, 205:1128–1141.
  57. Niccoli, F., Pelleri, F., Manetti, M. C., Sansone, D., Battipaglia, G., 2020: Effects of thinning intensity on productivity and water use efficiency of Quercus robur L. Forest Ecology and Management, 473:118282.
  58. Nilsen, E. T., Clinton, B. D., Lei, T. T., Miller, O. K., Semones, S. W., Walker, J. F., 2001: Does Rhododendron maximum L. (Ericaceae) reduce the availability of resources above and below-ground for canopy tree seedlings?. The American Midland Naturalist, 145:325−343.
  59. Oogathoo, S., Houle, D., Duchesne, L., Kneeshaw, D., 2020: Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agricultural and Forest Meteorology, 291:108063.
  60. Oguntunde, P. G., van de Giesen, N., Savenije, H. H. G., 2007: Measurement and modelling of transpiration of a rain-fed citrus orchard under subhumid tropical conditions. Agricultural Water Management, 87:200−208.
  61. Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F. et al., 2005: Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2 − Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. Journal of Hydrology, 303:290−306.
  62. Özçelik, M. S., Tomášková, I., Surový, P., Modlinger, R., 2022: Effect of forest edge cutting on transpiration rate in Picea abies [L.] H. Karst. Forests, 13:1238.
  63. Pereira, A. R., Green, S., Villa Nova, N. A., 2006: Penman–Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration. Agricultural Water Management, 83:153−161.
  64. Perevalova, E. A., 2019: Drought effect on the cambial activity of Scots pine in stands of different planting density. In: Forestry universities in the implementation of the concept of the engineering education revival: Socio-economic and environmental problems of the forestry complex. Ekaterinburg, Russia, Ural State Forest Engineering University, p. 219−221. (In Russian).
  65. Polák, T., Cudlín, P., Moravec, I., Albrechtová, J., 2006: Macroscopic indicators for the retrospective assessment of Norway spruce crown response to stress in the Krkonoše Mountains. Trees − Structure and Function, 21:23−35.
  66. Powell, D., Große-Wilde, E., Krokene, P., Roy, A., Chakraborty, A., Löfstedt, C. et al., 2021: A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Communication Biology, 4:1059.
  67. Raper, G. P., 1998: Agroforestry water use in Mediterranean regions of Australia. Rural Industries Research and Development Corporation, 71 p.
  68. Seidl, R., 2014: The shape of ecosystem management to come: anticipating risks and fostering resilience. BioScience, 64:1159−1169.
  69. Singh, U., Maca, P., Hanel, M., Markonis, Y., Nidamanuri, R. R., Nasreen, S. et al., 2023: Hybrid multi--model ensemble learning for reconstructing gridded runoff of Europe for 500 years. Information Fusion, 97:101807.
  70. Singh, V. V., Naseer, A., Sellamuthu, G., Jakuš, R., 2024a: An optimized and cost-effective RNA extraction method for secondary metabolite-enriched tissues of Norway spruce (Picea abies). Plants, 13:389.
  71. Singh, V. V., Naseer, A., Mogilicherla, K., Trubin, A., Zabihi, K., Roy, A. et al., 2024b: Understanding bark beetle outbreaks: Exploring the impact of changing temperature regimes, droughts, forest Structure, and prospects for future forest pest management. Reviews in Environmental Science and Bio/Technology, 23:1−34.
  72. Sonnentag, O., Talbot, J., Chen, J. M., Roulet, N. T., 2007: Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland. Agricultural and Forest Meteorology, 144:200−212.
  73. Stadelmann, G., Bugmann, H., Meier, F., Wermelinger, B., Bigler, C., 2013: Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. Forest Ecology and Management, 305:273−81.
  74. Steckel, M., Moser, W. K., del Río, M., Pretzsch, H., 2020: Implications of reduced stand density on tree growth and drought susceptibility: A study of three species under varying climate. Forests, 11:1−24.
  75. Thomas, A., Kolb, T., Biederman, J., Venturas, M. D., Ma, Q., Yang, D. et al., 2024: Mitigating drought mortality by incorporating topography into variable forest thinning strategies. Environmental Research Letters, 19:034035.
  76. Thorpe, H. C., Astrup, R., Trowbridge, A., Coates, K. D., 2010: Competition and tree crowns: A neighborhood analysis of three boreal tree species. Forest Ecology and Management, 259:1586−1596.
  77. Tolasz, R., Míková, T., Valeriánová, A., Voženílek, V., 2007: Climate atlas of Czechia. Prague, Czech Hydrometeorological Institute, 255 p.
  78. Trubin, A., Kozhoridze, G., Zabihi, K., Modlinger, R., Singh, V. V., Surový, P. et al., 2023: Detection of susceptible Norway spruce to bark beetle attack using PlanetScope multispectral imagery. Frontiers in Forest and Global Change, 6:1130721.
  79. Trubin, A., Kozhoridze, G., Zabihi, K., Modlinger, R., Singh, V. V., Surový, P. et al., 2024: Detection of green attack and bark beetle susceptibility in Norway Spruce: Utilizing PlanetScope Multispectral Imagery for Tri-Stage spectral separability analysis. Forest Ecology and Management, 560:121838.
  80. Urban, J., Ingwers, M. W., McGuire, M. A., Teskey, R. O., 2017: Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra. Journal of Experimental Botany, 68:1757−1767.
  81. Vanderhoof, M., Williams, C. A., Shuai, Y., Jarvis, D., Kulakowski, D., Masek, J., 2014: Albedo-induced radiative forcing from mountain pine beetle outbreaks in forests, south-central Rocky Mountains: Magnitude, persistence, and relation to outbreak severity. Biogeosciences, 11:563−575.
  82. von Caemmerer, S., Evans, J. R., 2015: Temperature responses of mesophyll conductance differ greatly between species. Plant Cell & Environment, 38:629−637.
  83. Wang, Y. P., Jarvis, P. G., 1990: Influence of crown structural properties on PAR absorption, photo-synthesis, and transpiration in Sitka spruce: application of a model (MAESTRO). Tree Physiology, 7:297−316.
  84. Wermelinger, B., Seifert, M., 1999: Temperature-dependent reproduction of the spruce bark beetle Ips typo-graphus, and analysis of the potential population growth. Ecological Entomology, 24:103−110.
  85. Young, D. J., Stevens, J. T., Earles, J. M., Moore, J., Ellis, A., Jirka, A. L. et al., 2017: Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters, 20:78−86.
  86. Zabihi, K., Surovy, P., Trubin, A., Singh, V. V., Jakuš, R., 2021: A review of major factors influencing the accuracy of mapping green-attack stage of bark beetle infestations using satellite imagery: Prospects to avoid data redundancy. Remote Sensing Applications: Society and Environment, 24:100638.
  87. Zabihi, K., Singh, V. V., Trubin, A., Tomášková, I., Bla-ženec, M., Surový, P. et al., 2023: Sap flow as a function of variables within nested scales: ordinary least squares vs. spatial regression models. Environmental Research: Ecology, 2:025002.
  88. Zausen, G. L., Kolb, T. E., Bailey, J. D., Wagner, M. R., 2005: Long-term impacts of stand management on ponderosa pine physiology and bark beetle abundance in northern Arizona: A replicated landscape study. Forest Ecology and Management, 218:291−305.
  89. Zavadilová, I., Szatniewska, J., Stojanović, M., Fleischer Jr, P., Vágner, L., Pavelka, M. et al., 2023: The effect of thinning intensity on sap flow and growth of Norway spruce. Journal of Forest Science, 69:205−216.
  90. Zhang, J., Ritchie, M. W., Maguire, D. A., Oliver, W. W., 2013: Thinning ponderosa pine (Pinus ponderosa) stands reduces mortality while maintaining stand productivity. Canadian Journal of Forest Research, 43:311−320.
  91. Zhang, J., Huang, S., He, F., 2015: Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences, 112:4009−14.
  92. Zhang, H., Wang, L., 2021: Analysis of the variation in potential evapotranspiration and surface wet conditions in the Hancang River Basin, China. Scientific Report, 11:1−10.
  93. Zhang, S., Landuyt, D., Verheyen, K., De Frenne, P., 2022: Tree species mixing can amplify microclimate offsets in young forest plantations. Journal of Applied Ecology, 59:1428−1439.
  94. ESRI, 2020: ArcGIS Desktop, release 10.8.1. California, USA: Redlands.
  95. IUSS Working Group WRB, 2006: World reference base for soil resources, World Soil Resources Reports. Rome, Italy, FAO.
  96. R Core Team., 2021: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  97. Suncalc.org, 2017: SunCalc sun position- and sun phases calculator. Available at https://www.suncalc.org/#/49.9942,14.8607,14/2022.06.24/05:48/1/0.
DOI: https://doi.org/10.2478/forj-2024-0021 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 107 - 120
Published on: May 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Vivek Vikram Singh, Khodabakhsh Zabihi, Aleksei Trubin, Pavel Cudlín, Nataliya Korolyova, Rastislav Jakuš, Miroslav Blaženec, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.