Allen, C. D., Breshears, D. D., McDowell, N. G., 2015: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6:1–55.
Bartík, M., Sitko, R., Oreňák, M., Slovik, J., Škvarenina, J., 2014: Snow accumulation and ablation in disturbed mountain spruce forest in West Tatra Mts. Biologia, 69:1492–1501.
Bigler, C., Vitasse, Y., 2021: Premature leaf discoloration of European deciduous trees is caused by drought and heat in late spring and cold spells in early fall. Agricultural and Forest Meteorology, 307:108492.
Bose, A. K., Scherrer, D., Camarero, J. J., Ziche, D., Babst, F., Bigler, Ch. et al., 2021: Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of the Total Environment, 784:147222.
Bošeľa, M., 2010: Climatic and soil characteristics of the altitudinal vegetation zones and edaphic-trophic units. Central European Forestry Journal, 56:215–234.
Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63:625–644.
Bucha, T., Koreň, M., 2017: Phenology of the beech forests in the Western Carpathians from MODIS for 2000–2015. iForest – Biogeosciences and Forestry, 10:537–546.
Bucha, T., Koren, M., Sitková, Z., Pavlendová, H., Snopková, Z., 2023: Trends and driving forces of spring phenology of oak and beech stands in the Western Carpathians from MODIS times series 2000–2021. iForest – Biogeosciences and Forestry, 16:334–344.
Camarero, J. J., Gazol, A., Cantero, A., Granda, E., Ibáñez, R., 2018: Forest Growth Responses to Drought at Short- and Long-Term Scales in Spain: Squeezing the Stress Memory from Tree Rings. Frontiers in Ecology and Evolution, 6:329909.
Čehulić, I., Sever, K., Katičić Bogdan, I., Jazbec, A., Škvorc, Ž., Bogdan, S., 2019: Drought Impact on Leaf Phenology and Spring Frost Susceptibility in a Quercus robur L. Provenance Trial. Forests, 10:50.
Chen, L., Huang, J. G., Ma, O., Hänninen, H., Rossi, S., Piao S. et al., 2018: Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Global Change Biology, 24:3969–3975.
Chuchma, F., Středová, H., Středa, T., 2016: Bioindication of climate development on the basis of long-term phenological observation. In: Polak, O., Cerkal, R., Belcredi, N. B., Horky, P., Vacek, P. (eds.): Proceedings of international PhD students conference – MendelNet 2016, Brno, Mendel University, p. 380–383.
Ciceu, A., Popa, I., Leca, S., Pitar, D., Chivulescu, S., Badea, O., 2020: Climate change effects on tree growth from Romanian forest monitoring Level II plots. Science of the Total Environment, 698:134129.
Csilléry, K., Buchmann, N., Fady, B., 2020: Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir (Abies alba Mill.) populations. Evolutionary Applications, 13:2357–2376.
Čufar, K., Luis, M. D., Saz, M. A., Črepinšek, Z., Kajfež-Bogataj, L., 2012: Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees, 26:1091–1100.
Didion-Gency, M., Vitasse, Y., Buchmann, N., Gessler, A., Gisler, J., Schaub, M. et al., 2023: Chronic warming and dry soils limit carbon uptake and growth despite a longer growing season in beech and oak. Plant Physiology, 194: 741–757.
Dittmar, C., Elling, W., 2006: Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. European Journal of Forest Research, 125:181–188.
Dolschak, K., Gartner, K., Berger, T. W., 2019: The impact of rising temperatures on water balance and phenology of European beech (Fagus sylvatica L.) stands. Modeling Earth Systems and Environment, 5:1347–1363.
Eaton, E., Caudullo, G., Oliveira, S., de Rigo, D., 2016. Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (eds.): European Atlas of Forest Tree Species. Luxembourg, Publ. Off. EU, p. e01c6df+.
Estrella, N., Menzel, A., 2006: Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Research, 32:253–267.
Filippo, A. D., Biondi, F., Čufar, K., Luis, M. D., Grabner, M., Maugeri, M. et al., 2007: Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: Spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography, 34:1873–1892.
Frei, E. R., Gossner, M. M., Vitasse, Y., Queloz, V., Dubach, V., Gessler, A. et al., 2022: European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biology (Stuttgart, Germany), 24:1132–1145.
Fu, Y. H., Piao, S., Cong, N., Zhao, H., Zhang, Y., Menzel, A. et al., 2014: Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 23:1255–1263.
Geßler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., Rennenberg, H., 2007: Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 21:1–11.
Guyon, D., Guillot, M., Vitasse, Y., Cardot, H., Hagolle, O., Delzon, S. et al., 2011: Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sensing of Environment, 115:615–627.
Hájková, L., Kožnarová, V., Sulovská, S., Richterová D., 2012: The temporal and spatial variability of pheno-logical phases of the Norway spruce (Picea abies [L.] Karsten) in the Czech Republic. Folia Oecologica, 39:10–20.
Harvey, J. E., Smiljanić, M., Scharnweber, T., Buras, A., Cedro, A., Cruz-García, R. et al., 2020: Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 26:2505–2518.
Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J. et al., 2014: Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesnícky časopis– Forestry Journal, 60:5–18.
Hlôška, L., Saniga, M., Chovancová, G., Chovancová, B., Homolová, Z., 2022: Temporal and spatial changes in small mammal communities in a disturbed mountain forest. Folia Oecologica, 49:9–22.
Hwang, T., Song, C., Vose, J. M., 2011: Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landscape Ecology, 26:541–556.
Kolářová, E., Nekovář, J., Adamík, P., 2014: Long-term temporal changes in central European tree phenology (1946−2010) confirm the recent extension of growing seasons. International Journal of Biometeorology, 58:1739–1748.
Krejza, J., Cienciala, E., Světlík, J., Bellan, M., Noyer, E., Horáček, P. et al., 2021: Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35:103–119.
Kubov, M., Schieber, B., Janík, R., 2022: Effect of Selected Meteorological Variables on Full Flowering of Some Forest Herbs in the Western Carpathians. Atmosphere, 13:195.
Lukasová, V., Bucha, T., Škvareninová, J., Škvarenina, J., 2019: Validation and application of European beech phenological metrics derived from MODIS data along an altitudinal gradient. Forests, 10:60.
Lukasová, V., Vido, J., Škvareninová, J., Bičárová, S., Hlavatá, H., Borsányi, P. et al., 2020: Autumn phenological response of European beech to summer drought and heat. Water, 12:2610.
Lukasová, V., Škvareninová, J., Bičárová, S., Sitárová, Z., Hlavatá, H., Borsányi, P. et al., 2021a: Regional and altitudinal aspects in summer heatwave intensification in the Western Carpathians. Theoretical and Applied Climatology, 146:1111–1125.
Lukasová, V., Bucha, T., Mareková, Ľ., Buchholcerová, A., Bičárová, S., 2021b: Changes in the greenness of mountain pine (Pinus mugo Turra) in the subalpine zone related to the winter climate. Remote Sensing, 13:1788.
Lukasová, V., Bičárová, S., Buchholcerová, A., Adamčíková, K., 2022: Low sensitivity of Pinus mugo to surface ozone pollution in the subalpine zone of continental Europe. International Journal of Biometeorology, 66:2311–2324.
Mátyás, C., Berki, I., Czúcz, B., Gálos, B., Móricz, N., Rastovits, E., 2010: Future of Beech in Southeast Europe from the Perspective of Evolutionary Ecology. Acta Silvatica et Lignaria Hungarica, 6:91–110.
Mátyás, C., Beran, F., Dostál, J., Čáp, J., Fulín, M., Vejpustková, M. et al., 2021: Surprising drought tolerance of Fir (Abies) species between past climatic adaptation and future projections reveals new chances for adaptive forest management. Forests, 12:821.
Meier, U., 2001: Growth stages of mono and dicotyledonous plants. BBCH Monograph. Bonn, Federal Biological Research Centre for Agriculture and Forestry. Available at https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf.
Meier, M., Vitasse, Y., Bugmann, H., Bigler, C., 2021: Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agricultural and Forest Meteorology, 307:108485.
Menzel, A., Estrella, N., Fabian, P., 2001: Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 7:657–666.
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R. et al., 2006: European phenological response to climate change matches the warming pattern. Global Change Biology, 12:1969–1976.
Mészáros, J., Halaj, M., Polčák, N., Onderka, M., 2022: Mean annual totals of precipitation during the period 1991–2015 with respect to cyclonic situations in Slovakia. Idöjárás – Quarterly journal of the Hungarian meteorological servece, 126:267–284.
Mezei, P., Jakuš, R., Pennerstorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J. et al., 2017: Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus – an infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology, 242:85–95.
Mezei, P., Fleischer, P., Rozkošný, J., Kurjak, D., Dzurenko, M., Rell, S. et al., 2022: Weather conditions and host characteristic drive infestations of sessile oak (Quercus petrea) trap trees by oak bark beetle (Scolytus intricatus). Forest Ecology and Management, 503:119775.
Mihai, G., Alexandru, A. M., Stoica, E., Birsan, M. V., 2021: Intraspecific growth response to drought of Abies alba in the Southeastern Carpathians. Forests, 12:387.
Minďáš, J., Lapin, M., Škvarenina, J., 1996: Klimatické zmeny a lesy Slovenska. In: Národný klimatický program SR. Bratislava, MŽP SR, 5, 96 p. (In Slovak).
Obladen, N., Dechering, P., Skiadaresis, G., Tegel, W., Keßler, J., Höllerl, S. et al., 2021: Tree mortality of European beech and Norway spruce induced by 2018–2019 hot droughts in central Germany. Agricultural and Forest Meteorology, 307:108482.
Petrik, P., Petek-Petrik, A., Kurjak, D., Mukarram, M., Klein, T., Gömöry, D. et al., 2022: Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. Plant Biology, 24:1287–1296.
Piao, S. L., Liu, Q., Chen, A. P., Janssens, I. A., Fu, Y., Dai, J. et al., 2019: Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25:1922–1940.
Reid, P. C., Hari, R. E., Beaugrand, G., Livingstone, D. M., Marty, Ch., Straileet, D. et al., 2016: Global impacts of the 1980s regime shift. Global Change Biology, 22:682–703.
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey M., 2013: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169:156–173.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray, J. M. et al., 2018: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data, 5:180028.
Rukh, S., Sanders, T. G., Krüger, I., Schad, T., Bolte, A., 2023: Distinct responses of European beech (Fagus sylvatica L.) to drought intensity and length – A review of the impacts of the 2003 and 2018–2019 drought events in Central Europe. Forests, 14:248.
de Sauvage, J. C., Vitasse, Y., Meier, M., Delzon, S., Bigler, C., 2022: Temperature rather than individual growing period length determines radial growth of sessile oak in the Pyrenees. Agricultural and Forest Meteorology, 317:108885.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A. et al., 2020: A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45:86–103.
Sippel, S., Fischer, E. M., Scherrer, S. C., Meinshausen, N., Knutti, R., 2020: Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming. Environmental Research Letters, 15:094056.
Svystun, T., Lundströmer, J., Berlin, M., Westin, J., Jönsson, A. M., 2021: Model analysis of temperature impact on the Norway spruce provenance specific bud burst and associated risk of frost damage. Forest Ecology and Management, 493:119252.
Škvareninová, J., Babálová, D., Valach, J., Snopková, Z., 2017: Impact of temperature and wetness of summer months on autumn vegetative phenological phases of selected species in Fageto-Quercetum in the years 2011–2015. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65:939–946.
Škvareninová, J., Lukasová, V., Borsányi, P., Kvas, A., Vido, J., Štefková, J. et al., 2022: The effect of climate change on spring frosts and flowering of Crataegus laevigata – The indicator of the validity of the weather lore about “The Ice Saints”. Ecological Indicators, 145:109688.
Středa, T., Litchmann, T., Středová, H., 2015: Relationship between tree bark surface temperature and selected meteorological elements. Contributions to Geophysics and Geodesy, 45:299–311.
Šustek, Z., Vido, J., Škvareninová, J., Škvarenina, J., Šurda, P., 2017: Drought impact on ground beetle assemblages (Coleoptera, Carabidae) in Norway spruce forests with different management after windstorm damage – a case study from Tatra Mts. (Slovakia). Journal of Hydrology and Hydromechanics, 65:333–342.
Thurm, E. A., Hernandez, L., Baltensweiler, A., Ayan, S., Rasztovits, E., Bielak, K. et al., 2018: Alternative tree species under climate warming in managed European forest, Forest Ecology and Management, 430:485–497.
Trnka, M., Balek, J., Štěpánek, P., Zahradníček, P., Možný, M., Eitzingeret, J. et al., 2016: Drought trends over part of Central Europe between 1961 and 2014. Climate Research, 70:143–160.
Vaneková, Z., Vanek, M., Škvarenina, J., Nagy, M., 2020: The influence of local habitat and microclimate on the levels of secondary metabolites in Slovak bilberry (Vaccinium myrtillus L.) fruits. Plants, 9:436.
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., 2010: A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index – SPEI. Journal of Climate, 23:1696.
Vitali, V., Büntgen, U., Bauhus, J., 2017: Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Global Change Biology, 23:5108–5119.
Vitasse, Y., Delzon, S., Dufrene, E., Pontiller, J. Y., Louvet, J. M., Kremer, A. et al., 2009: Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agricultural and Forest Meteorology, 149:735–744.
Vitasse, Y., Schneider, L., Rixen, C., Christen, D., Rebetez, M., 2018: Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248:60–69.
Xie, Y. Y., Wang, X. J., Wilson, A. M., Silander, J. A., 2018: Predicting autumn phenology: how deciduous tree species respond to weather stressors. Agricultural and Forest Meteorology, 250:127–137.
Zlatník, A., 1976: Přehled skupin typů geobiocénů původně lesních a křovinných ČSSR. Zprávy Geografického ústavu České akademie věd, 13:55–64. (In Czech).