Have a personal or library account? Click to login
Bitemporal aerial laser scans as an alternative to site index estimation: A case study in the Bohemian Switzerland National Park Cover

Bitemporal aerial laser scans as an alternative to site index estimation: A case study in the Bohemian Switzerland National Park

Open Access
|Sep 2024

References

  1. Ali-Sisto, D., Packalen, P., 2017: Forest Change Detection by Using Point Clouds from Dense Image Matching Together with a LiDAR-Derived Terrain Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10:1197–1206.
  2. Antonelli, P. L., 1992: The Algorithmic Beauty of Plants (Przemyslaw Prusinkiewicz and Aristid Linden-mayer). SIAM Review, 34:142–143.
  3. Bollandsås, O. M., Gregoire, T. G., Næsset, E., Øyen, B. H., 2013: Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data. Statistical Methods and Applications, 22:113–129.
  4. Bollandsås, O. M., Ørka, H. O., Dalponte, M., Gobakken, T., Næsset, E., 2019: Modelling site index in forest stands using airborne hyperspectral imagery and Bi-temporal laser scanner data. Remote Sensing, 11:1020.
  5. Bruna, V., Elznicova, J., Pacina, J., 2012: Využití geoinformačních technologií pro hodnocení krajiny přeshraniční oblasti Česko-Saské Švýcarsko. Ústí nad Labem, Univerzita J. E. Purkyně v Ústí nad Labem, Fakulta životního prostředí, 104 p. (In Czech).
  6. Černý, M., Pařez, J., Malík, Z., 1993: Růstové modely hlavních dřevin České republiky (smrk, borovice, buk, dub) – 2. etapa. Zpráva o výsledcích řešení za rok 1993. Skupina ekologického monitoring, PYRUS, 66 p. (In Czech).
  7. Cieszewski, C. J., Harrison, M., Martin, S. W., 2000: Practical methods for estimating non-biased parameters in self-referencing growth and yield models. PMRC Technical report. Georgia, University of Georgia. 11 p.
  8. Cieszewski, C. J., 2001: Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Canadian Journal of Forest Research, 31:165–173.
  9. Cieszewski, C. J., Strub, M., 2018: Comparing properties of self-referencing models based on nonlinear-fixed-effects versus nonlinear-mixed-effects modeling approaches. Mathematical and Computational Forestry and Natural-Resource Sciences, 10:46–57.
  10. Crespo-Peremarch, P., Fournier, R. A., Nguyen, V. T., van Lier, O. R., Ruiz, L. Á., 2020: A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data. Forest Ecology and Management, 473:118268.
  11. Fassnacht, F. E., White, J. C., Wulder, M. A., Næsset, E., 2023: Remote sensing in forestry: current challenges, considerations and directions. Forestry: An International Journal of Forest Research, 97:11–37.
  12. Goodbody, T. R. H., Coops, N. C., Luther, J. E., Tompalski, P., Mulverhill, C., Frizzle, C. et al., 2021: Airborne laser scanning for quantifying criteria and indicators of sustainable forest management in Canada. Canadian Journal of Forest Research, 51:972–985.
  13. Guerra-Hernández, J., Arellano-Pérez, S., González-Ferreiro, E., Pascual, A., Sandoval Altelarrea, V., Ruiz-González, A. D. et al., 2021: Developing a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data. Forest Ecology and Management, 481:118690.
  14. Hüttnerová, T., Muscarella, R., Surový, P., 2024: Drone microrelief analysis to predict the presence of naturally regenerated seedlings. Frontiers in Forests and Global Change, 6:1329675.
  15. Kurth, W., Anzola Jürgenson, G., 1997: Triebwachstum und Verzweigung junger Fichten in Abhängigkeit von den beiden Einflußgrößen “Beschattung” und “Wuchsdichte”: Datenaufbereitung und -analyse mit GROGRA. In: Pelz, D. (ed.): Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstl. Biometrie u. Informatik, 10. Tagung Freiburg i. Br. 24.–26. 9. 1997, Ljubljana, Biotechn. Fakultät, p. 89–108. (In German).
  16. Kuželka, K., Marušák, R., 2015: KORFit: An efficient growth function fitting tool. Computers and Electronics in Agriculture, 116:187–190.
  17. Ma, Q., Su, Y., Tao, S., Guo, Q., 2018: Quantifying individual tree growth and tree competition using bi-temporal airborne laser scanning data: a case study in the Sierra Nevada Mountains, California. International Journal of Digital Earth, 11:485–503.
  18. Mauya, E. W., Hansen, E. H., Gobakken, T., Bollandsås, O. M., Malimbwi, R. E., Næsset, E., 2015: Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance and Management, 10:10.
  19. Melichová, Z., Pekár, S., Surový, P., 2023: Benchmark for automatic clear-cut morphology detection methods derived from airborne LiDAR data. Forests, 14:2408.
  20. Moan, M. Å., Noordermeer, L., White, J. C., Coops, N. C., Bollandsås, O. M., 2023: Detecting and excluding disturbed forest areas improves site index determination using bitemporal airborne laser scanner data. Forestry: An International Journal of Forest Research, 97:48–58.
  21. Muhamad-Afizzul, M., Siti-Yasmin, Y., Hamdan, O., Tan, S. A., 2019: Estimating stand-level structural and biophysical variables of lowland dipterocarp forest using airborne LiDAR data. Journal of Tropical Forest Science, 31:312–323.
  22. Næsset, E., Gobakken, T., 2005: Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sensing of Environment, 96:453–465.
  23. Næsset, E., Gobakken, T., Solberg, S., Gregoire, T. G., Nelson, R., Ståhl, G. et al., 2011: Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area. Remote Sensing of Environment, 115:3599–3614.
  24. Nigul, K., Padari, A., Kiviste, A., Noe, S. M., Korjus, H., Laarmann, D. et al., 2021: The possibility of using the Chapman-Richards and Näslund functions to model height-diameter relationships in hemiboreal old-growth forest in Estonia. Forests, 12:1–15.
  25. Noordermeer, L., Bollandsås, O. M., Gobakken, T., Næsset, E., 2018: Direct and indirect site index determination for Norway spruce and Scots pine using bitemporal airborne laser scanner data. Forest Ecology and Management, 428:104–114.
  26. Noordermeer, L., Økseter, R., Ørka, H. O., Gobakken, T., Næsset, E., Bollandsås, O. M., 2019: Classifications of forest change by using bitemporal airborne laser scanner data. Remote Sensing, 11:2145.
  27. Noordermeer, L., Gobakken, T., Næsset, E., Bollandsås, O. M., 2020: Predicting and mapping site index in operational forest inventories using bitemporal air-borne laser scanner data. Forest Ecology and Management, 457:117768.
  28. Noordermeer, L., Gobakken, T., Næsset, E., Bollandsås, O. M., 2021: Economic utility of 3D remote sensing data for estimation of site index in Nordic commercial forest inventories: a comparison of airborne laser scanning, digital aerial photogrammetry and conventional practices. Scandinavian Journal of Forest Research, 36:55–67.
  29. Patočka, Z., Mikita, T., 2016: Využití plošného přístupu ke zpracování dat leteckého laserového skenování v inventarizaci lesa. Zprávy lesnického výzkumu, 61:115–124. (In Czech).
  30. Richards, F. J., 1959: A flexible growth function for empirical use. Journal of Experimental Botany, 10:290–301.
  31. Silva, C. A., Klauberg, C., De Pádua Chaves Carvalho, S., Rodriguez, L. C. E., 2013: Estimation of aboveground carbon stocks in Eucalyptus plantations using LIDAR. International Geoscience and Remote Sensing Symposium (IGARSS), 21–26 July 2013, Melbourne, VIC, Australia, p. 972–974.
  32. Socha, J., Pierzchalski, M., Bałazy, R., Ciesielski, M., 2017: Modelling top height growth and site index using repeated laser scanning data. Forest Ecology and Management, 406:307–317.
  33. Socha, J., Hawryło, P., Stereńczak, K., Miścicki, S., Tymińska-Czabańska, L., Młocek, W. et al., 2020: Assessing the sensitivity of site index models developed using bi-temporal airborne laser scanning data to different top height estimates and grid cell sizes. International Journal of Applied Earth Observation and Geoinformation, 91:102129.
  34. Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., 2014: Simulating the impacts of error in species and height upon tree volume derived from airborne laser scanning data. Forest Ecology and Management, 327:167–177.
  35. Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., Pickell, P. D., 2015a: Estimating forest site productivity using airborne laser scanning data and Landsat time series. Canadian Journal of Remote Sensing, 41:232–245.
  36. Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., 2015b: Augmenting site index estimation with airborne laser scanning data. Forest Science, 61:861–873.
  37. Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., 2015c: Enriching ALS-derived area-based estimates of volume through tree-level downscaling. Forests, 6:2608–2630.
  38. Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., 2016: Enhancing forest growth and yield predictions with airborne laser scanning data: Increasing spatial detail and optimizing yield curve selection through template matching. Forests, 7:1–20.
  39. Tompalski, P., Coops, N. C., Marshall, P. L., White, J. C., Wulder, M. A., Bailey, T., 2018: Combining multi-date airborne laser scanning and digital aerial photogrammetric data for forest growth and yield modelling. Remote Sensing, 10:1–21.
  40. Vauhkonen, J., Ørka, H. O., Holmgren, J., Dalponte, M., Heinzel, J., Koch, B., 2014: Tree species recognition based on airborne laser scanning and complementary data source. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds.): Forestry applications of airborne laser scanning. Managing Forest Ecosystems. Springer, Dordrecht., p. 135–156.
  41. Watt, M. S., Dash, J. P., Bhandari, S., Watt, P., 2015: Comparing parametric and non-parametric methods of predicting Site Index for radiata pine using combinations of data derived from environmental surfaces, satellite imagery and airborne laser scanning. Forest Ecology and Management, 357:1–9.
  42. White, J. C., Stepper, C., Tompalski, P., Coops, N. C., Wulder, M. A., 2015: Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests, 6:3704–3732.
  43. Woo, H., Eskelson, B. N. I., Monleon, V. J., 2020: Tree height increment models for national forest inventory data in the Pacific Northwest, USA. Forests, 11:2. Yu, X., Hyyppä, J., Kaartinen, H., Hyyppä, H., Maltamo, M., Rönnholm, P., 2005: Measuring the growth of individual trees using multi-temporal airborne laser scanning point clouds. ISPRS WG III/3, III/4, V/3 Workshop “Laser scanning 2005”, 12–14 September 2005, Enschede, the Netherlands, p. 204–208.
  44. Yu, X., Hyyppä, J., Holopainen, M., Vastaranta, M., 2010: Comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sensing, 2:1481–1495.
  45. Zhao-Gang, L., Feng-Ri, L., 2003: The generalized Chapman-Richards function and applications to tree and stand growth. Journal of Forestry Research, 14:19–26.
  46. Change detection in ArcGIS Pro. Available at https://pro.arcgis.com/en/pro-app/latest/help/analysis/image-analyst/change-detection-in-arcgis-pro.htm.
  47. Minus (Spatial Analyst). Available at https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/minus.htm.
  48. PDAL. (2022a). Available at https://pdal.io/en/2.4.3/workshop/exercises/analysis/ground/ground.html.
  49. PDAL. (2022b). Available at https://pdal.io/en/2.4.3/workshop/exercises/analysis/rasterize/rasterize.html.
  50. PDAL. (2022c). Available at https://pdal.io/en/2.4.3/workshop/exercises/analysis/dtm/dtm.html.
  51. R Core Team, 2023. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available at https://www.R-project.org/ (accessed on 7 December 2023).
  52. Zonal Statistics as Table (Spatial Analyst). Available at https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/zonal-statistics-as-table.htm.
DOI: https://doi.org/10.2478/forj-2024-0006 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 187 - 198
Published on: Sep 19, 2024
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Zlatica Melichová, Dana Vébrová, Robert Marušák, Peter Surový, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.