Akça, H., Aktaş, L., Yağmur, Y., Altun, N., 2008: Investigation of induction of tolerance mechanisms to drought and changes of endogenous hormones of laurel (Laurus nobilis L.). Ege Forestry Research Institute, 38, 58 p.
Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I. et al., 2017: Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104: 267–276.
Arena, C., Vitale, L., Santo, A. V., 2008: Photosynthesis and photoprotective strategies in Laurus nobilis L. and Quercus ilex L. under summer drought and winter cold. Official Journal of the Societa Botanica Italiana, 142:472–479.
Atta, H. A. E., Aref, I. M., Ahmed, A. I., Khan, P. R., 2012: Morphological and anatomical response of Acacia ehrenbergiana Hayne and Acacia tortilis [Forssk] Haynes subsp. raddiana seedlings to induced water stress. African Journal of Biotechnology, 11:10188–10199.
Bhusal, N., Lee, M., Lee, H., Adhikari, A., Han, A. H., Kim, H. S., 2021: Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Science of the Total Environment, 779:146466.
Christodoulakis, N., Fasseas, C., 1990: Air pollution effects on the leaf structure of Laurus nobilis, an injury resistant species. Bulletin of Environmental Contamination and Toxicology, 44:276–281.
David, T. S., Henriques, M. O., Besson, C. K., Nunes, J., Valente, F., Vaz, M. et al., 2007: Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiology, 27:793–803.
Deligöz, A., Bayar, E., 2018: Drought stress responses of seedlings of two oak species (Quercus cerris and Quercus robur). Turkish Journal of Agriculture and Forestry, 42:114–123.
Deligöz, A., Bayar, E., 2021: Impact of drought stress on water potential and gas exchange parameters in Macedonian oak (Quercus trojana P. B. Webb.) seedlings. Turkish Journal of Forestry, 22:366–370.
Dubois, M., Gilles, K. A., Hamilton, J. K., 1956: Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28:350–356.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. 2009: Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29:185–212.
Guo, X., Luo, Y. J. J., Xu, Z. W. W., Li, M. Y. Y., Guo, W. H., 2019: Response strategies of Acer davidii to varying light regimes under different water conditions. Flora, 257:151423.
Hussain, M., Malik, M. A., Farooq, M., Ashraf, M. Y., Cheema, M. A., 2008: Improving Drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. Journal Agronomy and Crop Science, 194:193–199.
Jafarnia, S., Akbarinia, M., Hosseinpour, B., Sanavi, S. A. M., Salami, S. A., 2018: Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. iForest-Biogeosciences and Forestry, 11:212–220.
Jaleel, C. A., Manivannan P., Wahid A., Farooq, M., Somasundaram, R., Panneerselvam, R., 2009: Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11:100–105.
Jalili, S., Arzani, K., Prudencio, A. S., Salazar, J. A., Martínez-García P. J., Bouzari N. et al., 2023: Integrated morphological, physiological and molecular analysis of the drought response in cultivated and wild Prunus L. subgenera Cerasus species. Plant Molecular Biology Reporter, 41:440–453.
Kaya, M. D., Okçub, G., Ataka, M., Çıkılıc, Y., Kolsarıcı, Ö., 2006: Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24:291–295.
Kou, X., Han, W., Kang, J., 2022: Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 13:1085409.
Maatallah, S., Ghanem, M. E., Albouchi, A., Bizid, E., Lutts, S., 2010: A greenhouse investigation of responses to different water stress regimes of Laurus nobilis trees from two climatic regions. Journal of Arid Environments, 74:327–337.
Maatallah, S., Nasri, N., Hajlaoui, H., Albouchi, A., Elaissi, A., 2016: Evaluation changing of essential oil of laurel (Laurus nobilis L.) under water deficit stress conditions. Industrial Crops and Products, 91:170–178.
Michelozzi, M., Johnson, J. D., Warrag, E. I., 1995: Response of ethylene and chlorophyll in two eucalyptus clones during drought. New Forests, 9:197–204.
Naser, L., Kourosh, V., Bahman, K., Reza, A., 2010: Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regia L.) during germination. Fruits, 65:97–112.
Özyurt, K., Akça, Y., 2017: Determination of the effects of drought stress on the stomata and other morphological traits in Prunus mahaleb L. rootstocks. Journal of Agricultural Faculty of Gaziosmanpasa University, 34:34–40.
Paparella, A., Nawade, B., Shaltiel-Harpaz, L., Ibdah, M. A., 2022: A review of the botany, volatile composition, biochemical and molecular aspects, and traditional uses of Laurus nobilis. Plants, 11:1209.
Pasha, P., Mirsar, S., Shekhany, H., Mohammad, R., 2019: Growth performance of Bay (Laurus nobilis L.) under different amount, period of watering and NPK. Tikrit Journal for Agricultural Sciences, 19:83–92.
Pirzad, A., Shakiba, M. R., Salmasi, S. Z., 2011: Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. Journal of Medicinal Plants Research, 5:2483–2488.
Ravanbakhsh, M., Babakhani, B., Ghasemnezhad, M., Serpooshan, F., Bigloui, M. H., 2023: Acer velutinum Bioss. (velvet maple) seedlings are more tolerant to water deficit than Alnus subcordata C. A. Mey. (Caucasian alder) seedlings. Acta Botanica Croatica, 82:60–70.
Rhizopoulou, S., Mitrakos, K., 1990: Water Relations of evergreen sclerophylls. I. Seasonal changes in the water relations of eleven species from the same environment. Annals of Botany, 65:171–178.
Saadaoui, E., Yahia, K. B., Dhahri, S., Ben Jamaa, M., Khouja, M., 2017: An overview of adaptative responses to drought stress in Eucalyptus spp. Forestry Studies, 67:86–96.
Sakamoto, A., Murata, N., 2002: The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment, 25:163–171.
Shehab, G. G., Ahmed, O. K., El-Beltagi, H. S., 2010: Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38:139–148.
Siddique, M. R. B., Hamid, A., Islam, M. S., 2000: Drought stress effects on water relations of wheat. Botanical Bulletin – Academia Sinica Taipei, 41:35–39.
Sönmez, E., 2023: The importance of Laurel plant extract in fighting harmful insects. In: Kaya, Y., Beser, N. (eds.): Proceedings of the V. International Agricultural, Biological & Life Science Conference, September 18–20, Edirne, Turkey, p. 13–19.
Sudachkova, N. E., Milyutina, I. L., Semenova, G. P., 2002: Influence of water deficit on contents of carbohydrates and nitrogenous compounds in Pinus sylvestris L. and Larix sibirica Ledeb. tissues. Eurasian Journal of Forest Research, 4:1–11.
Tariq, A., Pan, K., Olatunji, O. A., Graciano, C., Li, Z., Sun, F. et al., 2018: Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential. Scientific Reports, 8:1–11.
Toscano, S. S., Farieri, E., Ferrante, A., Romano, D., 2016: Physiological and biochemical responses in two ornamental shrubs to drought. Frontiers in Plant Science, 7:645.
Varonea, L., Ribas-Carbo, M., Cardonac, C., Gallé, A., Medranob, H., Gratani, L. et al., 2012: Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species preconditioned and aged in nurseries: Different response to water stress. Environmental and Experimental Botany, 75:235–247.
Vesala, T., Sevanto, S., Grönholm, T., Salmon, Y., Nikinmaa, E., Hari, P. et al., 2017: Effect of leaf water potential on internal humidity and CO2 dissolution: Reverse transpiration and improved water use efficiency under negative pressure. Frontiers in Plant Science, 8:54.
Wu, M., Zhang, W. H., Ma, C., Zhou, J. Y., 2013: Changes in morphological, physiological, and biochemical responses to different levels of drought stress in Chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology, 60:681–692.
Wu, Y., Zhong, H., Li, J., Xing, J., Xu, N., Zou, H., 2022: Water use efficiency and photosynthesis of Calamagrostis angustifolia leaves under drought stress through CO2 concentration increase. Journal of Plant Interactions, 17:60–74.
Yılmaz, Ç., Kulaç, Ş., Beyazyüz, F., 2022: Investigation of morphological, physiological and biochemical changes in Hophornbeam (Ostrya carpinifolia Scop.) saplings under drought stress. Düzce University Faculty of Forestry. Journal of Forestry, 18:169–190.
Yvens, E. M. C., Hugo, A. P., Benedito, G. S. F., Sofia, S., Corrêa, J. R. R. S., Moacyr, B. D. F., 2009: Physiological and morphological responses of young mahogany (Swietenia macrophylla King) plants to drought. Forest Ecology and Management, 258:1449–1455.
Zielewicz, W., Wrobel, B., Niedbala, G., 2020: Quantification of chlorophyll and carotene pigments content in mountain Melick (Melica nutans L.) in relation to edaphic variables. Forests, 11:1–16.