Have a personal or library account? Click to login
Inconsistent phenotypic differentiation at physiological traits in Norway spruce (Picea abies Karst.) provenances under contrasting water regimes Cover

Inconsistent phenotypic differentiation at physiological traits in Norway spruce (Picea abies Karst.) provenances under contrasting water regimes

Open Access
|Oct 2023

References

  1. Alberto, F. J., Aitken, S. N., Alía, R., González-Martínez, S. C., Hänninen, H., Kremer, A. et al., 2013: Potential for evolutionary responses to climate change evidence from tree populations. Global Change Biology, 19:1645–1661.
  2. Besnard, G., Achère, V., Faivre Rampant, P., Favre, J. M., Jeandroz, S., 2003: A set of cross-species amplifying microsatellite markers developed from DNA sequence databanks in Picea (Pinaceae). Molecular Ecology Notes, 3:380–383.
  3. Bräutigam, K., Vining, K. J., Lafon-Placette, C., Fossdal, C. G., Mirouze, M., Marcos, J. G. et al., 2013: Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 3:399–415.
  4. Brommer, J. E., 2011: Whither PST? The approximation of QST by PST in evolutionary and conservation biology. Journal of Evolutionary Biology, 24:1160–1168.
  5. Browne, L., MacDonald, B., Fitz-Gibbon, S., Wright, J. W., Sork, V. L., 2021: Genome-wide variation in DNA methylation predicts variation in leaf traits in an ecosystem-foundational oak species. Forests, 12:569.
  6. Bruce, T. J. A., Matthes, M. C., Napier, J. A., Pickett, J. A., 2007: Stressful “memories” of plants: evidence and possible mechanisms. Plant Science, 173:603–608.
  7. Burczyk, J., Lewandowski, A., Chalupka, W., 2004: Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 197:39–48.
  8. Čepl, J., Holá, D., Stejskal, J., Korecký, J., Kočová, M., Lhotáková, Z. et al., 2016: Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.). Tree Physiology, 36:883–895.
  9. Chapuis, M.-P., Estoup, A., 2007: Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24:621−631.
  10. Comps, B., Gömöry, D., Letouzey, J., Thiébaut, B., Petit, R. J., 2001: Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics, 157:389–397.
  11. Doyle, J. J., Doyle, J. L., 1987: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19:11–15.
  12. Earl, D. A., 2012: Structure harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4:359–361.
  13. Evanno, G., Regnaut, S., Goudet, J., 2005: Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14:2611–2620.
  14. Feng, Z. Z., Yuan, X. Y., Fares, S., Loreto, F., Li, P., Hoshika, Y. et al., 2019: Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. Plant Cell & Environment, 42:1939–1949.
  15. Fluch, S., Burg, A., Kopecky, D., Homolka, A., Spiess, N., Vendramin, G. G., 2011: Characterization of variable EST SSR markers for Norway spruce (Picea abies L.). BMC Research Notes, 4:401.
  16. Gömöry, D., 1992: Effect of stand origin on the genetic diversity of Norway spruce (Picea abies Karst.) populations. Forest Ecology and Management, 54:215–223.
  17. Gömöry, D., Himanen, K., Tollefsrud, M. M., Uggla, C., Kraigher, H., Bordács, S. et al., 2021: Genetic aspects in production and use of forest reproductive material: Collecting scientific evidence to support the development of guidelines and decision support tools. European Forest Genetic Resources Programme, European Forest Institute, Barcelona, 216 p.
  18. Hájíčková, M., Plichta, R., Urban, J., Volařík, D., Gebauer, R., 2021: Low resistance but high resilience to drought of flushing Norway spruce seedlings. Tree Physiology, 41:1848–1860.
  19. Haselhorst, M. S. H., Parchman, T. L., Buerkle, C. A., 2019: Genetic evidence for species cohesion, substructure and hybrids in spruce. Molecular Ecology, 28:2029–2045.
  20. Jakobsson, M., Rosenberg, N. A., 2007: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformaticst, 23:1801–1806.
  21. Jandl, R., 2020: Climate-induced challenges of Norway spruce in Northern Austria. Trees For People, 1:100008.
  22. Jordan, R., Prober, S. M., Hoffmann, A. A., Dillon, S. K., 2020: Combined analyses of phenotype, genotype and climate implicate local adaptation as a driver of diversity in Eucalyptus macrocarpa (Grey Box). Forests, 11:495.
  23. Kleiber, A., Duan, Q. X., Jansen, K., Junker, L. V., Kammerer, B., Rennenberg, H. et al., 2017: Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance. Tree Physiology, 37:1648.
  24. König, A., 2005: Provenance research: evaluation the spatial pattern of genetic variation. In: Geburek, T., Turok, J. (eds.): Conservation and Management of Forest Genetic Resources in Europe. Arbora Publishers, Zvolen and IPGRI, Rome, p. 275–334.
  25. Konnert, M., Fady, B., Gömöry, D., A’Hara, S., Wolter, F., Ducci, F. et al., 2015: Use and transfer of forest reproductive material in Europe in the context of climate change. European Forest Genetic Resources Programme, Bioversity International, Rome, xvi and 75 p.
  26. Kopaczyk, J. M., Wargula, J., Jelonek, T., 2020: The variability of terpenes in conifers under developmental and environmental stimuli. Environmental and Experimental Botany, 180:104–197.
  27. Latalowa, M., van der Knaap, W. O., 2006: Late Quaternary expansion of Norway spruce Picea abies [L.] Karst. in Europe according to pollen data. Quaternary Science Reviews, 25:2780–2805.
  28. Leinonen, T., Cano, J. M., Mäkinen, H., Merilä, J., 2006: Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. Journal of Evolutionary Biology, 19:1803–1812.
  29. Leinonen, T., O’Hara, R. B., Cano, J. M., Merilä, J., 2008: Comparative studies of quantitative trait and neutral marker divergence: a metaanalysis. Journal of Evolutionary Biology, 21:1–17.
  30. Lepais, O., Bacles, C. F., 2014: Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees. Molecular Ecology, 23:4671–4673.
  31. Lévesque, M., Saurer, M., Siegwolf, R., Eilmann, B., Brang, P., Bugmann, H. et al., 2013: Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Global Change Biology, 19:3184–3199.
  32. Li, L., Zhang, Q., Huang, D. F., 2014: A review of imaging techniques for plant phenotyping. Sensors 14:20078–20111.
  33. Loreto, F., Schnitzler, J. P., 2010: Abiotic stresses and induced BVOCs. Trends in Plant Science, 15:154–166
  34. Lüpke, M., Leuchner, M., Steinbrecher, R., Menzel, A., 2016: Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances. Tree Physiology, 36:1382–1399.
  35. Marozas, V., Augustaitis, A., Pivoras, A., Baumgarten, M. et al., 2019: Comparative analyses of gas exchange characteristics and chlorophyll fluorescence of three dominant tree species during the vegetation season in hemi-boreal zone, Lithuania. Journal of Agricultural Meteorology, 75:3–12.
  36. McKay, J. K., Latta, R. G., 2002: Adaptive population divergence: markers, QTL and traits. Trends in Ecology and Evolution, 17:285–291.
  37. Meirmans, P. G., 2012: The trouble with isolation by distance. Molecular Ecology, 21:2839–2846.
  38. Merilä, J., Crnokrak, P., 2001: Comparison of genetic differentiation at marker loci and quantitative traits. Journal of Evolutionary Biology, 14:892–903.
  39. Merilä, J., Hendry, A. P., 2014: Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 7:1–14.
  40. Mosca, E., Di Pierro, E. A., Budde, K. B., Neale, D. B., González-Martínez, S. C., 2018: Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species. Molecular Ecology, 27:647–658.
  41. O’Connell, L. M., Mosseler, A., Rajora, O. P., 2007: Extensive long distance pollen dispersal in a fragmented landscape maintains genetic diversity in white spruce. Journal of Heredity, 98:640–645.
  42. Pollastrini, M., Nogales, A. G., Benavides, R., Bonal, D., Finer, L., Fotelli, M. et al., 2017: Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest. Tree Physiology, 37:199–208.
  43. Pritchard, J. K., Stephens, M., Donnelly, P., 2000: Inference of population structure from multilocus geno-type data. Genetics, 155:945–959.
  44. Pujol, B., Wilson, A. J., Ross, R. I. C., Pannell, J. R., 2008: Are QSTFST comparisons for natural populations meaningful? Molecular Ecology, 17:4782–4785.
  45. Ravazzi, C., 2002: Late Quaternary history of spruce in southern Europe. Review of Palaeobotany and Palynology, 120:131–177.
  46. Roberts, D. A., Roth, K. L., Wetherley, E. B., Meerdink, S. K., Perroy, R. L., 2018: Hyperspectral vegetation indices. In: Thenkabail, P. S., Lyon, J. G., Huete, A. (eds.): Hyperspectral Indices and Image Classifications for Agriculture and Vegetation. CRC Press, Boca Raton (FL), p. 3–26.
  47. Rungis, D., Berube, Y., Zhang, J., Ralph, S. et al., 2004: Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theoretical and Applied Genetics. 109:1283–1294.
  48. Savolainen, O., Pyhäjärvi, T., Knürr, T., 2007: Gene flow and local adaptation in trees. Annual Reviews in Ecology, Evolution and Systematics, 38:595–619.
  49. Schurman, J. S., Trotsiuk, V., Bače, R., Čada, V. et al., 2018: Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology, 24:2169–2181.
  50. Scotti, I., Magni, F., Fink, R., Powell, W., Binelli, G., Hedley, P., 2000: Microsatellite repeats are not randomly distributed within Norway spruce (Picea abies Karst.) expressed sequences. Genome, 43:41–46.
  51. Spitze, K., 1993: Population structure in Daphnia obtusa – quantitative genetic and allozymic variation. Genetics, 135:367–374.
  52. Tattini, M., Loreto, F., Fini, A., Guidi, L., Brunetti, C., Velikova, V. et al., 2015: Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. New Phytolo-gist, 207:613–626.
  53. Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M. A., Steppe, K., 2015: Responses of tree species to heat waves and extreme heat events. Plant Cell & Environment, 38:1699–1712.
  54. Tognetti, R., Michelozzi, M., Lauteri, M., Brugnoli, E., Giannini, R., 2000: Geographic variation in growth, carbon isotope discrimination, and monoterpene composition in Pinus pinaster Ait. provenances. Canadian Journal of Forest Research, 30:1682–1690.
  55. Tollefsrud, M. M., Kissling, R., Gugerli, F., Johnsen, Ø., Skrøppa, T., Cheddadi, R. et al., 2008: Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Molecular Ecology, 17:4134–4150.
  56. Turtola, S., Manninen, A. M., Rikala, R., Kainulainen, P., 2003: Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. Journal of Chemical Ecology, 29:1981–1995.
  57. Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U. et al., 2018: Phytohormones enhanced drought tolerance in plants: a coping strategy. Environmental Science and Pollution Research, 25:33103–33118.
  58. van Meeningen, Y., Wang, M., Karlsson, T., Seifert, A., Schurgers, G., Rinnan, R. et al., 2017: Isoprenoid emission variation of Norway spruce across a European latitudinal transect. Atmospheric Environment, 170:45–57.
  59. Vasemägi, A., Primmer, C. R., 2005: Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Molecular Ecology 14:3623–3642.
  60. Verta, J. P., Landry, C. R., MacKay, J. J., 2013: Are long-lived trees poised for evolutionary change? Single locus effects in the evolution of gene expression networks in spruce. Molecular Ecology, 22:2369–2379.
  61. Vitali, V., Forrester, D. I., Bauhus, J., 2018: Know your neighbours: drought response of Norway spruce, silver fir and Douglas fir in mixed forests depends on species identity and diversity of tree neighbourhoods. Ecosystems, 21:1215–1229.
  62. Wilkinson, S., Davies, W. J., 2010: Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell & Environment, 33:510–525.
  63. Winner, W. E., Thomas, S. C., Berry, J. A., Bond, B. J., Cooper, C. E., Hinckley, T. M. et al., 2004: Canopy carbon gain and water use: Analysis of old-growth conifers in the Pacific Northwest. Ecosystems, 7:482–497.
  64. Wright, S., 1951: The genetical structure of populations. Annals of Eugenics 15:323–354.
  65. Yazdani, R., Rudin, D., Aldén, T., Lindgren, D., Harbom, B., Ljung, K., 1982: Inheritance pattern of 5 monoterpenes in Scots pine (Pinus sylvestris L). Hereditas, 97:261–272.
  66. European Communities, 1999: Council Directive 1999/105/EC of 22 December 1999 on the marketing of forest reproductive material.
DOI: https://doi.org/10.2478/forj-2023-0010 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 214 - 223
Published on: Oct 19, 2023
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Dušan Gömöry, Ľubica Ditmarová, Matúš Hrivnák, Gabriela Jamnická, Alena Konôpková, Diana Krajmerová, Daniel Kurjak, Jana Marešová, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.