Have a personal or library account? Click to login
The principle of space-for-time substitution in predicting Picea spp. biomass change under climate shifts Cover

The principle of space-for-time substitution in predicting Picea spp. biomass change under climate shifts

Open Access
|Aug 2022

References

  1. Alcamo, J., Moreno, J. M., Nováky, B., Bindi, M., Corobov, R., Devoy, R. J. et al., 2007: Europe. Climate change 2007: impacts, adaptation and vulnerability. In: Parry, M. L. et al. (eds.): Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, p. 541–580.
  2. Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L., Trugman A. T., 2019: Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Global Change Biology, 25:3793–3802.10.1111/gcb.1477131323157
  3. Anderson, K. J., Allen, A. P., Gillooly, J. F., Brown, J. H., 2006: Temperature-dependence of biomass accumulation rates during secondary succession. Ecology Letters, 9:673–682.10.1111/j.1461-0248.2006.00914.x16706912
  4. Anuchin, N. P., 1952: Forest Mensuration. Moscow-Leningrad, Goslesbumizdat, 532 p.
  5. Aubin, I., Boisvert-Marsh, L., Kebli, H., McKenney, D., Pedlar, J., Lawrence, K. et al., 2018: Tree vulnerability to climate change: Improving exposure-based assessments using traits as indicators of sensitivity. Ecosphere, 9:e02108.10.1002/ecs2.2108
  6. Belote, R. T., Carroll, C., Martinuzzi, S., Michalak, J., Williams, J. W., Williamson, M. A. et al., 2018: Assessing agreement among alternative climate change projections to inform conservation recommendations in the contiguous United States. Scientific Reports, 8:1–13.10.1038/s41598-018-27721-6601345429930266
  7. Berner, L. T., Beck, P. S. A., Bunn, A. G., Goetz, S. J., 2013: Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biology, 19:3449–3462.10.1111/gcb.1230423813896
  8. Blois, J. L. Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., Ferrier, S., 2013: Space can substitute for time in predicting climate-change effects on biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 110:9374–9379.10.1073/pnas.1220228110367742323690569
  9. Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., Zemp, M., 2014: The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society, 95:1431–1443.10.1175/BAMS-D-13-00047.1
  10. Booth, G. D., Niccolucci, M. J., Schuster, E. G., 1994: Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation. U.S. Department of Agriculture; Intermountain Research Station. Research Paper INT-470, 13 p.
  11. Bošela, M., Kulla, L., Rößiger, J., Šebeň, V., Dobor, L., Büntgen, U. et al., 2019: Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. Forest Ecology and Management, 446:293–303.10.1016/j.foreco.2019.05.033
  12. Buras, A., Rammig, A., Zang, C. S., 2020: Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences, 17:1655–1672.10.5194/bg-17-1655-2020
  13. Čermák, P., Mikita,T., Kadavý, J., Trnka, M., 2021: Evaluating recent and future climatic suitability for the cultivation of Norway spruce in the Czech Republic in comparison with observed tree cover loss between 2001 and 2020. Forests, 12:1687.10.3390/f12121687
  14. Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D. et al., 2005: Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145:87–99.10.1007/s00442-005-0100-x15971085
  15. Costa, A., Salvidio, S., Penner, J., Basile, M., 2021: Time-for-space substitution in N-mixture models for estimating population trends: a simulation-based evaluation. Scientific Reports, 11:4581.10.1038/s41598-021-84010-5790734633633209
  16. Currie, D. J., 2001: Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems (N.Y.), 4:216–225.10.1007/s10021-001-0005-4
  17. Dalponte, M., 2018: itcSegment: Individual tree crowns segmentation. R package version 0.8. Available at:https://CRAN.R-project.org/package=itcSegment.
  18. DeLeo, V. L., Menge, D. N., Hanks, E. M., Juenger, T. E., Lasky, J. R., 2020: Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Global Change Biology, 26:523–538.10.1111/gcb.1488031665819
  19. Denney, D. A., Anderson, J. T., 2020: Natural history collections document biological responses to climate change: A commentary on DeLeo et al., 2020, Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Global Change Biology, 26:340–342.10.1111/gcb.1492231733005
  20. Dent, D., 2021: The great melt. Accounts from the front-line of climate change. Alister Doyle, Cheltenham, Flint. 256 p. Available at: https://www.tandfonline.com.10.1080/00207233.2021.2006917
  21. Dokuchaev, V. V., 1948: The science of the zones of nature. Moscow, Geografgiz. 63 p.
  22. Draper, N. R., Smith, H., 1966: Applied Regression analysis. New York, Wiley Publ. Translated under the title “Prikladnoi regressionnyi analiz”. Moscow, “Statistika” Publ., 1973. 392 p.
  23. Dutcă, I., Mather, R., Ioraş, F., 2018: Tree biomass allometry during the early growth of Norway spruce (Picea abies) varies between pure stands and mixtures with European beech (Fagus sylvatica). Canadian Journal of Forest Research, 48:77–84.10.1139/cjfr-2017-0177
  24. Dussarrat, T., Decros, G., Díaz, F. P., Gibon, Y., Latorre, C., Rolin, D. et al., 2021: Another tale from the harsh world: How plants adapt to extreme environments. Annual Plant Reviews, 4:551–604.10.1002/9781119312994.apr0758
  25. Emanuel, W. R., Shugart, H. H., Stevenson, M. P., 1985: Climate change and the broad scale distribution of terrestrial ecosystem complexes. Climate Change, 7:29–43.10.1007/BF00139439
  26. Elith, J., Leathwick, J. R., 2009: Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics, 40:677–697.10.1146/annurev.ecolsys.110308.120159
  27. Feller, M. C., 1992: Generalized versus site-specific bio-mass regression equations for Pseudotsuga menziessi var. menziesii and Thuja plicata in Coastal British Columbia. Bioresource Technology, 39:9–16.10.1016/0960-8524(92)90050-8
  28. Ferrier, S., Guisan, A., 2006: Spatial modelling of bio-diversity at the community level. Journal of Applied Ecology, 43:393–404.10.1111/j.1365-2664.2006.01149.x
  29. Fiedler, F., 1978: Abhängigkeit des Zuwachses in Fichtenbeständen von der Witterung unter Einfluß des Baumalters und der Standortsgruppe. Arch. Naturschutz u. Landschaftsforsch. Berlin, 18:227–230.
  30. Fitzpatrick, M. C., Sanders, N. J., Ferrier, S., Longino, J. T., Weiser, M. D., Dunn, R. R., 2011: Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography, 34:836–847.10.1111/j.1600-0587.2011.06653.x
  31. Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A., Stein, B. A. et al., 2019: Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 10:e551.10.1002/wcc.551
  32. Fonti, M. V., 2020: Climatic signal in the parameters of annual rings (wood density, anatomical structure and isotopic composition) of coniferous and deciduous tree species in various natural and climatic zones of Eurasia: Diss. Doct. Biol. Sci.: 03.02.08. Krasnoyarsk, Siberian Federal University, 45 p. Available at:https://research.sfu-kras.ru/sites/research.sfu-kras.ru/files/Avtoreferat_Fonti.pdf.
  33. Forrester, D. I., Tachauer, I. H., Annighöefer, P., Barbeito, I. G., Pretzsch, H., Ruiz-Peinado, R. et al., 2017: Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 396:160–175.10.1016/j.foreco.2017.04.011
  34. Fu, L., Sun, W., Wang, G., 2017: A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees, 31:557–573.10.1007/s00468-016-1490-6
  35. Ghosh, S., Wildi, O., 2007: Statistical analysis of landscape data: Space-for-time, probability surfaces and discovering species. In: Kienast, F. et al. (eds.): A Changing World: Challenges for Landscape Research. Landscape Series, 8. Dordrecht, Springer, p. 209–221.10.1007/978-1-4020-4436-6_14
  36. Givnish, T. J., 2002: Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36:703–743.10.14214/sf.535
  37. Glass, G. V., 1976: Primary, secondary and meta-analysis of research. Educational Researcher, 5:3–8.10.3102/0013189X005010003
  38. Glebov, F. Z., Litvinenko, V. I., 1976: The dynamics of tree ring width in relation to meteorological indices in different types of wetland forests. Lesovedenie, 4:56–62.
  39. Grundmann, B. M., 2009: Dendroklimatologische und dendroökologische Untersuchungen des Zuwachsverhaltens von Buche und Fichte in naturnahen Mischwäldern. Dissertation zur Erlangung des akademischen Grades. Technische Universität Dresden, Tharandt, 195 p.
  40. Guisan, A., Thuiller, W., 2005: Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8:993–1009.10.1111/j.1461-0248.2005.00792.x34517687
  41. Hari, V., Rakovec, O., Markonis, Y., Hanel, M., Kumar, R., 2020: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Scientific Reports, 10:12207.10.1038/s41598-020-68872-9741354932764540
  42. Horrocks, C. A., Newsham, K. K., Cox, F., Garnett, M. H., Robinson, C. H., Dungait, J. A. J., 2020: Predicting climate change impacts on maritime Antarctic soils: a space-for-time substitution study. Soil Biology and Biochemistry, 141:107682.10.1016/j.soilbio.2019.107682
  43. Huang, X., Tang, G., Zhu, T., Ding, H., Na, J., 2019: Space-for-time substitution in geomorphology: A critical review and conceptual framework. Journal of Geographical Sciences, 29:1670–1680.10.1007/s11442-019-1684-0
  44. Huston, M. A., Wolverton, S., 2009: The global distribution of net primary production: resolving the paradox. Ecological Monographs, 79:343–377.10.1890/08-0588.1
  45. Jensen, C. E., 1984: Development of Structured Regression Hypotheses/Interactive Descriptive Geometry Through Five Dimensions. U.S. Department of Agriculture; Intermountain Forest and Range Experiment Station Ogden. Research Paper INT- 324, 155 p. Available at:https://digitalcommons.usu.edu/govdocs_misc/1.
  46. Keeling, H. C., Phillips, O. L., 2007: The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16:618–631.10.1111/j.1466-8238.2007.00314.x
  47. Kobak, K. I., Kondrasheva, N.Yu., 1992: Changes in localization of natural zones under global warming. Russian Journal of Ecology, 3:9–18.
  48. Korzukhin, M. D., Semevsky, F. N., 1992: Synecology of the forest. St. Petersburg, Hydrometeoizdat. 192 p.
  49. Leštianska, A., Fleischer, P. jr., Merganičová, K., Fleischer, P., Střelcová, K., 2020a: Influence of warmer and drier environmental conditions on species-specific stem circumference dynamics and water status of conifers in submontane zone of Central Slovakia. Water, 12:2945.10.3390/w12102945
  50. Leštianska A., Fleischer P. jr., Fleischer P., Merganičová K., Střelcová K. 2020b: Interspecific variation in growth and tree water status of conifers under water-limited conditions. Journal of Hydrology and Hydro-mechanics, 68:4.
  51. Leštianska, A., Merganičová, K., Merganič, J., Střelcová, K., 2015: Intra-annual patterns of weather and daily radial growth changes of Norway spruce and their relationship in the Western Carpathian mountain region over a period of 2008–2012. Journal of Forest Science, 61:315–324.10.17221/24/2015-JFS
  52. Liebig, J., 1840: Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig: Verlag Vieweg. Deutsches Textarchiv. Available at: http://www.deutschestextarchiv.de/liebig_agricultur_1840.10.5962/bhl.title.42117
  53. Liepa, I. Y., 1980: Dynamics of wood stock: Forecast and ecology. Riga, Zinatne, 170 p.
  54. Liepa, I. Y., 1985: A united method of taxation of stands response to anthropogenic influence. Lesovedenie, 6:12–18.
  55. Madgwick, H. A. I, 1983: Above-ground weight of forest plots – comparison of seven methods of estimation. New Zealand Journal of Forestry Science, 13:100–107.
  56. Maurin’s, A. M., Liepa, I. Ya., Drike, A. Ya, Pospelova, G. E., 1977: Prediction of fruiting of woody plants. In: Optimization of the use and reproduction of forests of the USSR. Moscow, Nauka, p. 50–53.
  57. McGuire, A. D., 2010: Recent impacts of climate change in Alaska and other boreal regions. In: Parrotta, J. A., Carr, M. A. (eds.): The International Forestry Review: Forests for the Future: Sustaining Society and the Environment. XXIII IUFRO World Congress, 23–28 August 2010, Seoul, Republic of Korea. Abstracts:20.
  58. McKenney, D. W., Pedlar, J. H., Rood, R. B., Price, D., 2011: Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biology, 17:2720–2730.10.1111/j.1365-2486.2011.02413.x
  59. McLone, R. R., 1979: Mathematical modeling – the art of applying mathematics. In: Andrews, J. G., McLone, R. R. (eds.): Mathematical modeling. Moscow, Mir, p. 9–20.
  60. Miyanishi, K., Johnson, E. A., 2007: Coastal dune succession and the reality of dune processes. In: Johnson, E. A. et al. (eds.): Plant Disturbance Ecology: The Process and the Response. San Diego, CA, Academic Press, p. 249–282.10.1016/B978-012088778-1/50010-8
  61. Molchanov, A. A., 1971: Productivity of organic mass in forests of different zones. Moscow, Nauka, 275 p.
  62. Mugasha, W. A., Eid, T., Bollandsås, O. M., Malimbwi, R. E., Chamshama, S. A. O., Zahabu, E. et al., 2012: Allometric models for prediction of aboveground bio-mass of single trees in miombo woodlands in Tanzania. In: Proceedings of the first Climate Change Impacts, Mitigation and Adaptation Programme Scientific Conference, p. 8–17.
  63. Müller, A., Weigelt, J., Götz, A., Schmidt, O., Alva, I. L., Matuschke, I., et al., 2015: The role of biomass in the sustainable development goals: A reality check and governance implications. IASS Working Paper. Potsdam, Institute for Advanced Sustainability Studies, 36 p.
  64. Muukkonen, P., Mäkipää, R., 2006: Biomass equations for European trees: Addendum. Silva Fennica, 40:763–773.10.14214/sf.475
  65. Nebe, W., 1966: Über die Düngebedürftigkeit von Fichtenbeständen im Mittelgebirge. Archiv für Forstwesen, 15:929–952.
  66. Odum, E., 1975: Fundamentals of Ecology. Moscow, Mir, 740 p.
  67. Olenin, S. M., 1982: Dynamics of radial growth of stands of pine phytocenoses in the middle taiga subzone of the Pre-Urals: PhD thesis, Sverdlovsk, 18 p.
  68. Paterson, S.S., 1956: The forest area of the world and its potential productivity. Göteborg, the Royal University, 216 p.
  69. Pastor, J., Aber, J. D., Melillo, J. M., 1984: Biomass prediction using generalized allometric regressions for some Northeast tree species. Forest Ecology and Management, 7:265–274.10.1016/0378-1127(84)90003-3
  70. Poryazov, Ya., Tonchev, T., Dobrichov, I., 2004: Forest mensuration textbook. Sofia, Bulvark, 420 p.
  71. Protasov, A. N., 1952: Plantations of Siberian larch in the zone of dark-chestnut soils of Kazakhstan. Lesnoe Khozyaistvo, 2:31–33.
  72. Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., Baldocchi, D. D., 2014: Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences USA, 111:201216065.10.1073/pnas.1216065111418333425225392
  73. Ricklefs, R. E., 1979: Fundamentals of Common Ecology. Moscow, Mir. 424 p.
  74. Ricklefs, R. E., 1987: Community diversity: Relative roles of local and regional processes. Science, 235:167–171.10.1126/science.235.4785.16717778629
  75. Röhle, H., Gerold, D., Gemballa, R., 2010: Beziehungen zwischen Klima und Zuwachs, dargestellt am Beispiel von Fichte, Kiefer und Buche in Sachsen. Allgemeine Forst- und Jagdzeitung, 181:21–35.
  76. Rößiger, G., Kulla, L., Bošeľa, M., 2019: Changes in growth caused by climate change and other limiting factors in time affect the optimal equilibrium of close-to-nature forest management. Central European Forestry Journal, 65:180–190.10.2478/forj-2019-0023
  77. Rosen, R., 1967: Optimality principles in biology. London, Butterworths, 198 p.10.1007/978-1-4899-6419-9
  78. Rosenberg, G. S., Ryansky, F. N., Lazareva, N. V., Saksonov, S. V., Simonov, Yu. V., Khasaev, G. R., 2016: General and Applied Ecology. Samara-Togliatti, Publishing House of the Samara State Economic University, 452 p.
  79. Royer-Tardif, S., Boisvert-Marsh, L., Godbout, J., Isabel, N., Aubin, I., 2021: Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. Ecology and Evolution, 11:13081–13100.10.1002/ece3.8024849582134646454
  80. Rubtsov, V. I., Ilyin, A. M., 1956: To the question of the effect of precipitation and air temperature on the growth of Scots pine trees. Scientific Notes of the Voronezh Forestry Institute, 15:57–62.
  81. Rukhovich, D. I., Pankova, E. I., Kalinina, N. V., Chernousenko, G. I., 2019: Quantification of the parameters of zones and facies of chestnut soils in Russia on the basis of the climatic-soil-textural index. Eurasian Soil Science, 52:271–282.10.1134/S1064229319010125
  82. Saraiva, D. D., Esser, L. F., Grasel, D., Jarenkow, J. A., 2021: Distribution shifts, potential refugia, and the performance of protected areas under climate change in the Araucaria moist forests ecoregion. Applied Vegetation Science, 24:e12628.10.1111/avsc.12628
  83. Schaphoff, S., Reyer, C. P., Schepaschenko, D., Gerten, D., Shvidenko, A., 2016: Tamm Review: observed and projected climate change impacts on Russia’s forests and its carbon balance. Forest Ecology and Management, 361:432–444.10.1016/j.foreco.2015.11.043
  84. Schnabel, F., Purrucker, S., Schmitt L., Engelmann R. A., Kahl A., Richter R., et al., 2021: Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Global Change Biology, Preprint, p. 1–14.10.1101/2021.03.05.434090
  85. Schulze, E.-D., Schulze, W., Kelliher, F. M., Vygodskaya, N. N., Ziegler, W., Kobak, K. I. et al., 1995: Aboveground biomass and nitrogen nutriation in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Canadian Journal of Forest Research, 25:943–960.10.1139/x95-103
  86. Schulze, E.-D. (ed.), 2000: Carbon and nutrient cycling in European forest ecosystems. (Ecological Studies. Vol. 142). Berlin, Heidelberg, New York, Springer-Verlag, 506 p.10.1007/978-3-642-57219-7
  87. Scarascia-Mugnozza, G., Bauer, G. A., Persson, H., Matteucci, G., Masci, A., 2000: Tree biomass, growth and nutrient pools. In: E.-D. Schulze (ed.): Carbon and nutrient cycling in European forest ecosystems. (Ecological Studies, 142). Berlin, Heidelberg, New York, Springer-Verlag, 49–62.10.1007/978-3-642-57219-7_3
  88. Seidl, R., Albrich, K., Thom, D., Rammer, W., 2018: Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. Journal of Environmental Management, 209:46–56.10.1016/j.jenvman.2017.12.014
  89. Shelford, V. E., 1913: Animal communities in temperate America as illustrated in the Chicago region: a study in animal ecology. Issue 5., Part 1. Pub. for the Geographic Society of Chicago by the University of Chicago Press, 362 p.10.5962/bhl.title.34437
  90. Singh, T., 1986: Generalizing biomass equations for the boreal forest region of west-central Canada. Forest Ecology and Management, 17:97–107.10.1016/0378-1127(86)90102-7
  91. Smolonogov, E. P., 1995: Forest formation process and genetic classification of forest types. Lesa Urala I Khozyaistvo v nikh, 18:43–58.
  92. Spathelf, P., Stanturf, J., Kleine, M., Jandl, R., Chiatante, D., Bolte, A., 2018: Adaptive measures: integrating adaptive forest management and forest landscape restoration. Annals of Forest Science, 75:55.10.1007/s13595-018-0736-4
  93. Stegen, J. C., Swenson, N. G., Enquist, B. J., White, E. P., Phillips, O. L., Jorgensen, P. M. et al., 2011: Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20:744–754.10.1111/j.1466-8238.2010.00645.x
  94. Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., Prentice, I. C., 2005: Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences USA, 102:8245–8250.10.1073/pnas.0409902102114048015919825
  95. Timofeev, V. P., 1939: The death of spruce due to lack of moisture. Lesnoe Khozayistvo, 9:6–15.
  96. Tolsky, A. P., 1904: On the influence of temperature and precipitation on the growth of Scots pine in stem thickness. Forest Journal, 5:858–868.
  97. Toromani, E., Bojaxhi, F., 2010: Growth response of silver fir and Bosnian pine from Kosovo. South-East European Forestry, 1: 20–27.10.15177/seefor.10-03
  98. Usoltsev, V. A., 1990: Mensuration of forest biomass: Modernization of standard base of forest inventory. In: XIX World Congress Proceedings, IUFRO, Division 4. Canada, Montreal:79-92. Available et: https://www.researchgate.net/publication/312094663_Usoltsev_V_A_Mensuration_of_forest_biomass_Modernization_of_standard_base_of_forest_inventory_XIX_World_Congress_Proceedings_IUFRO_Division_4-_Canada_Montreal_1990-_P_79-92
  99. Usoltsev, V. A., 2001: Forest biomass of Northern Eurasia: database and geography. Scientific issue. Yekaterinburg, Ural Branch of Russian Academy of Sciences, 708 p.
  100. Usoltsev, V. A., 2007a: Some methodological and conceptual uncertainties in estimating the income component of the forest carbon cycle. Russian Journal of Ecology, 38:1–10.10.1134/S1067413607010018
  101. Usoltsev, V. A., 2007b: Biological productivity of Northern Eurasia’s forests: methods, datasets, applications. Yekaterinburg, Ural Branch of Russian Academy of Sciences, 2007. 636 p. Available at: http://elar.usfeu.ru/handle/123456789/3281.
  102. Usoltsev, V. A., 2010: Eurasian forest biomass and primary production data. Yekaterinburg, Ural Branch of Russian Academy of Sciences. 574 p. Available at: http://elar.usfeu.ru/handle/123456789/2606.
  103. Usoltsev, V. A., 2018: In basements of the biosphere: What we know about the primary production of tree roots? Eko-Potencial, 24:24–77. Available at:https://elar.usfeu.ru/bitstream/123456789/8024/1/eko4-18-04.pdf.
  104. Usoltsev, V. A., 2020: Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The second edition, enlarged. Yekaterinburg, Ural State Forest Engineering University; Botanical Garden, Ural Branch of Russian Academy of Sciences. Available at:https://elar.usfeu.ru/bit-stream/123456789/9647/2/Base1_v2_ob.pdf.
  105. Usoltsev, V. A., Kolchin, K. V., Malenko, A. A., 2017a: Sign change in generic allometric models in local estimation of larch biomass. Vestnik Altaiskogo Gosudarstvennogo Agrarnogo Universiteta, 150:85–90.
  106. Usoltsev, V. A., Kolchin, K. V., Chasovskikh, V. P., 2017b: Offset modelli allometriche generale ad una stima della biomassa locale di abeti in Eurasia (Biases of generic allometric models when local estimating spruce tree biomass in Eurasia). Italian Science Review, 48/49:27–31.
  107. Usoltsev, V. A., Kolchin, K. V., Noritsina, Yu. V., Azarenok, M. V., Bogoslovskaya, O. A., 2017c: Biases of generic species-specific allometric models when local estimating tree biomass of firs and 2- or 5-needled pines (Abies Mill., Pinus sylvestris L., Pinus sibirica Du Tour). Eko-Potencial, 18:47–58.
  108. Usoltsev, V. A., Merganičová, K., Konôpka, B., Osmirko, A. A., Tsepordey, I. S., Chasovskikh, V. P., 2019a: Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Central European Forestry Journal, 65:166–179.10.2478/forj-2019-0017
  109. Usoltsev, V. A., Zukow, W., Osmirko, A. A., Tsepordey, I. S., Chasovskikh, V. P., 2019b: Additive biomass models for Larix spp. single-trees sensitive to temperature and precipitation in Eurasia. Ecological Questions, 30:57–67.10.12775/EQ.2019.012
  110. Usoltsev, V. A., Shobairi, S. O. R., Chasovskikh, V. P., 2019c: Comparing of allometric models of single-tree biomass intended for airborne laser sensing and terrestrial taxation of carbon pool in the forests of Eurasia. Natural Resource Modeling, 32:e12187.10.1111/nrm.12187
  111. Usoltsev, V. A., Kovyazin, V. F., Tsepordey, I. S., 2020a: Increasing contribution of climate variables to the explanation of Quercus spp. single-tree biomass variability in Eurasia as related to model deviation from allometry. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 233:39–59.10.21266/2079-4304.2020.233.39-59
  112. Usoltsev, V. A., Shobairi, S. O. R., Tsepordey, I. S., 2020b: Compatible models for Quercus spp. stand biomass and net primary production sensitive to precipitation and winter temperature in Eurasia. Macedonian Journal of Ecology and Environment, 22:59–70.
  113. Utkin, A. I., 2004: Two voluminous books about the phytomass of the forests of Northern Eurasia. Lesovedenie, 1:68–70.
  114. Vasseur, F., Exposito-Alonso, M., Ayala-Garay, O. J., Wang, G., Enquist, B. J., Vile, D. et al., 2018: Adaptive diversification of growth allometry in the plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 115:3416–3421.10.1073/pnas.1709141115587965129540570
  115. Veloz, S., Williams, J. W., Blois, J. L., He, F., Otto-Bliesner, B., Liu, Z., 2012: No-analog climates and shifting realized niches during the late Quaternary: Implications for 21st-century predictions by species distribution models. Global Change Biology, 18:1698–1713.10.1111/j.1365-2486.2011.02635.x
  116. Wade, A. A., Hand, B. K., Kovach, R. P., Muhlfeld, C. C., Waples, R. S., Luikart, G., 2017: Assessments of species’ vulnerability to climate change: From pseudo to science. Biodiversity and Conservation, 26:223–229.10.1007/s10531-016-1232-5
  117. West, G. B., Brown, J. H., Enguist, B. J., 1999: A general model for the structure and allometry of plant vascular system. Nature, 400:664–667.10.1038/23251
  118. Wilmking, M., Juday, G. P., Barber, V. A., Zald, H. S., 2004: Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology, 10:1724–1736.10.1111/j.1365-2486.2004.00826.x
  119. World Weather Maps: 2007. Available at: https://www.mapsofworld.com/referrals/weather
  120. Zeng, W. S., Duo, H. R., Lei, X. D., Chen, X. Y., Wang, X. J., Pu, Y. et al., 2017: Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. European Journal of Forest Research, 136:233–249.10.1007/s10342-017-1024-9
DOI: https://doi.org/10.2478/forj-2022-0004 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 174 - 189
Published on: Aug 23, 2022
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Vladimir A. Usoltsev, Katarína Merganičová, Bohdan Konôpka, Ivan S. Tsepordey, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.