Have a personal or library account? Click to login
Dendrochronological data from twelve countries proved definite growth response of black alder (Alnus glutinosa [L.] Gaertn.) to climate courses across its distribution range Cover

Dendrochronological data from twelve countries proved definite growth response of black alder (Alnus glutinosa [L.] Gaertn.) to climate courses across its distribution range

Open Access
|Aug 2022

References

  1. Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D.O., Keller, W. et al., 2009: Lakes as sentinels of climate change. Limnol Oceanogr, 54:2283–2297.10.4319/lo.2009.54.6_part_2.2283
  2. Aosaar, J., Varik, M., Lõhmus, K., Ostonen, I., Becker, H., Uri, V., 2013: Long-term study of above- and below-ground biomass production in relation to nitrogen and carbon accumulation dynamics in a grey alder (Alnus incana [L.] Moench) plantation on former agricultural land. European Journal of Forest Research, 132:737–749.10.1007/s10342-013-0706-1
  3. Argyilan, E. P., Forman, S. L., 2003: Lake level response to seasonal climatic variability in the lake Michigan Huron system from 1920 to 1995. Journal of Great Lakes Research, 29:488–500.10.1016/S0380-1330(03)70453-5
  4. Bartoš, J., Kacálek, D., 2011: Produkce mladých porostů první generace lesa na bývalé zemědělské půdě. Zprávy lesnického výzkumu, 2:118–124.
  5. Biondi, F., Waikul, K., 2004: DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers and Geosciences, 30:303–311.10.1016/j.cageo.2003.11.004
  6. Biurrun, I., Campos, J. A., Garcia-Mijangos, I., Herrera, M., Loidi, J., 2016: Floodplain forests of the Iberian Peninsula: vegetation classification and climatic features. Applied Vegetation Science, 19:336–354.10.1111/avsc.12219
  7. Brus, R., 2005: Dendrology for Foresters. Biotechnical Faculty, Department for Renewable Forest Resources, Ljubljana, 408 p.
  8. Claessens, H., Thibaut, A., Rondeux, J., 2002: Quelques résultats prometteurs pour une sylviculture de l’aulne glutineux en Wallonie. Revue Forestière Française, 54:259–270.10.4267/2042/4918
  9. Claessens, H., 2003: The alder populations of Europe. Forestry Commission Bulletin, 126:5–14.
  10. Claessens, H., Oosterbaan, A., Savill, P., Rondeux, J., 2010: A review of the characteristics of black alder (Alnus glutinosa [L.] Gaertn.) and their implications for silvicultural practices. Forestry, 83:163–175.10.1093/forestry/cpp038
  11. Cukor, J., Vacek, Z., Linda, R., Sharma, R. P., Vacek, S., 2019: Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PloS one, 14:e0221082.10.1371/journal.pone.0221082669518631415638
  12. D’Arrigo, R., Wilson, R., Liepert, B., Cherubini, P., 2008: On the “Divergence Problem” in northern forests: a review of the tree-ring evidence and possible causes. Global and Planetary Change, 60:289–305.10.1016/j.gloplacha.2007.03.004
  13. DeRose, R. J,, Wang, S. Y., Buckley, B. M., Bekker, M. F., 2014: Tree-ring reconstruction of the level of Great Salt Lake. USA. Holocene, 24:805–813.10.1177/0959683614530441
  14. Desplanque, C., Rolland, C., Schweingruber, F. H., 1999: Influence of species and abiotic factors on extreme tree ring modulation: Picea abies and Abies alba in Tarentaise and Maurienne (French Alps). Trees – Structure and Function, 13:218–227.10.1007/s004680050236
  15. Dincă, L., Murariu, G., Enescu, C. M., Achim, F., GeorgescU, L., Murariu, A. et al., 2020: Productivity differences between southern and northern slopes of Southern Carpathians (Romania) for Norway spruce, silver fir, birch and black alder. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48:1070–1084.10.15835/nbha48211824
  16. Douda, J., 2008: Formalized classification of the vegetation of alder carr and floodplain. Preslia, 80:199–224.
  17. Douda, J., Čejková, A., Douda, K., Kochánková, J., 2009: Development of alder carr after the abandonment of wet grasslands during the last 70 years. Annals of Forest Science, 66:712–725.10.1051/forest/2009065
  18. Douda, J., 2010: The role of landscape configuration in plant composition of floodplain forests across different physiographic areas. Journal of Vegetation Science, 21:1110–1124.10.1111/j.1654-1103.2010.01213.x
  19. Dulamsuren, C., Hauck, M., Kopp, G., Ruff, M., Leuschner, C., 2017: European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees, 31:673–686.10.1007/s00468-016-1499-x
  20. Dussart, G., 1999: The ecological implications of loss of alder trees. Consolidates Progress Report of the EUConcerted Action, FAIR5–CT97–3615, 104 p.
  21. Elferts, D., Dauškane, I., Ūsele, G., Treimane, A., 2011: Effect of water level and climatic factors on the radial growth of black alder. Proceedings of the Latvian Academy of Sciences. Section B, 65:164–169.10.2478/v10046-011-0032-2
  22. Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., Paulissen, D., 1992: Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze KG, Göttingen, 248 p.
  23. Eschenbach, Ch., Kappen, L., 1999: Leaf water relations of black alder (Alnus glutinosa (L.) Gaertn.) growing at neighbouring sites with different water regimes. Trees, 14:28–38.10.1007/s004680050004
  24. Glenz, C., Schaepfer, R., Iorgulescu, I., Kienast, F., 2006: Flooding tolerance of central European tree and shrub species. Forest Ecology and Management, 235:1–13.10.1016/j.foreco.2006.05.065
  25. Grissino-Mayer, H. D., Holmes, R. L., Fritts, H. C., 1992: International tree-ring data bank program library: user´s manual. Laboratory of Tree-Ring Research, University of Arizona, Tuscon, USA, Tuscon, p. 75–87.
  26. Hacke, U., Sauter, J.J., 1996: Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiology, 111:413–417.10.1104/pp.111.2.41315785012226296
  27. Hájek, V., Vacek, Z., Vacek, S., Bílek, L., Prausová, R., Rostislav, L. et al., 2020: Changes in diversity of protected scree and herb-rich beech forest ecosystems over 55 years. Central European Forestry Journal, 66:202–217.10.2478/forj-2020-0011
  28. Hájek, V., Vacek, S., Vacek, Z., Cukor, J., Šimůnek, V., Šimková, M. et al., 2021: Effect of climate change on the growth of endangered scree forests in Krkonoše National Park (Czech Republic). Forests, 12:1127.10.3390/f12081127
  29. Härdtle, W., von Oheimb, G., Meyer, H., Westpal, C., 2003: Patterns of species composition and species richness in moist (ash-alder) forests of northern Germany (Schleswig-Holstein). Feddes Repertorium, 114:574–586.10.1002/fedr.200311016
  30. Hérault, B., Honnay, O., 2005: The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. Journal of Biogeography, 32:2069–2081.10.1111/j.1365-2699.2005.01351.x
  31. Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., Turčáni, M., 2021: Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490:119075.10.1016/j.foreco.2021.119075
  32. Huang, J., Tardif, J.C., Bergeron, Y., Denneler, B., Berninger, F., Girardin, M.P., 2010: Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Global Change Biology, 16:711–731.10.1111/j.1365-2486.2009.01990.x
  33. Hytönen, J., Saarsalmi, A., 2015: Biomass production of coppiced grey alder and the effect of fertilization. Silva Fennica, 49:1–16.10.14214/sf.1260
  34. Jakubisová, M., Jakubis, M., Lukáčik, I., 2012: Black alder (Alnus glutinosa (L.) Gaertner) and its bank-protective effect on the banks of water flows quantified by method BSTEM. Folia Oecologica, 40:34–40.
  35. Kajba, D., Gracan, J., 2003: EUFORGEN Technical Guidelines for genetic conservation and use for Black Alder (Alnus glutinosa). International Plant Genetic Resources Institute, Rome, 4 p.
  36. Kamocki, A.K., Banaszuk, P., Kołos, A., 2018: Removal of European alder Alnus glutinosa-An active method of mire conservation. Ecological Engineering, 111:33–50.10.1016/j.ecoleng.2017.11.014
  37. Keeland, B. D., Sharitz, R. R., 1997: The effects of water-level fluctuations on weekly tree growth in a southeastern USA swamp. American Journal of Botany, 84:131–139.10.2307/2445890
  38. King, R.A., Ferris, C., 1998: Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Molecular Ecology, 4:95–103.
  39. Knibbe, B., 2007: Personal Analysis System for Treering Research – PAST 4.2. Sciem. Vienna, Austria, 161 p.
  40. Köppen, W., 1936: Das Geographische System der Kli-mate, Handbuch der Klimatologie. Gebrüder Born-traeger, Berlin, 44 p.
  41. Kozlowski, T. T., Pallardy, S. G., 1997: Growth control in woody plants. San Diego: Academic Press, 641 p.
  42. Kraft, G., 1884: Beiträgezur zur lehre von den durchforstungen, schlagstellungen und lichtungshieben. Klindworth, Hannover, Germany, 147 p.
  43. Král, J., Vacek, S., Vacek, Z., Putalová, T., Bulusek, D., Štefančík, I., 2015: Structure, development and health status of spruce forests affected by air pollution in the western Krkonose Mts. in 1979–2014. Central European Forestry Journal, 61:175–187.10.1515/forj-2015-0026
  44. Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W., Sykes, M. T. et al., 2010: Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change – range, abundance, genetic diversity and adaptive response. Forest Ecology and Management, 259:2213–2222.10.1016/j.foreco.2009.12.023
  45. Krzaklewski, W., Pietrzykowski, M., Woś, B., 2012: Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecological Engineering, 49:35–40.10.1016/j.ecoleng.2012.08.026
  46. Laganis, J., Pečkov, A., Debeljak, M., 2008: Modeling radial growth increment of black alder (Alnus glutionsa (L.) Gaertn.) tree. Ecological Modelling, 215:180–189.10.1016/j.ecolmodel.2008.02.018
  47. Lara, A., Urrutia, R., Villalba, R., Luckman, B. H., Soto, D., Aravena, J. C. et al., 2005: The potential use of tree-rings to reconstruct streamflow and estuarine salinity in the Valdivian Rainforest eco-region, Chile. Dendrochronologia, 22:155–161.10.1016/j.dendro.2005.04.002
  48. Lebourgeois, F., Bréda, N., Ulrich, E., Granier, A., 2005: Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees, 19:385–401.10.1007/s00468-004-0397-9
  49. Levanic, T., Kotar, M., 1996: The effect of hydroamelio-rations on the forest conditions at Črni Log. Drainage and Environment, 6th ICID Drainage Workshop, Ljubljana, Slovenia, April 22–24, p. 127–138.
  50. Linderholm, H. W., 1999: Climatic and anthropogenic influences on radial growth of Scots Pine at Hanvedsmossen, a raised peat bog, in south central Sweden. Geografiska Annaler Series A Physical Geography, 81:75–86.10.1111/j.0435-3676.1999.00050.x
  51. Linderholm, H.W., Leine, M., 2004: An assessment of twentieth century tree-cover changes on a southern Swedish peatland combining dendrochronoloy and aerial photograph analysis. Wetlands, 24:357–363.10.1672/0277-5212(2004)024[0357:AAOTCT]2.0.CO;2
  52. Mäkinen, H., Nöjd, P., Kahle, H. P., Neumann, U., Tveite, B., Mielikäinen, K. et al., 2002: Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management, 171:243–259.10.1016/S0378-1127(01)00786-1
  53. Mander, Ü., Lõhmus, K., Teiter, S., Uri, V., Augustin, J., 2008: Gaseous nitrogen and carbon fluxes in riparian alder stands. Boreal Environment Research, 13:231–241.
  54. Malewski, T., Topor, R., Nowakowska, J.A., Oszako, T., 2020: Decline of Black Alder Alnus glutinosa (L.) Gaertn. along the Narewka River in the Białowieża Forest District. Lesne Prace Badawcze, 81:147–152.10.2478/frp-2020-0017
  55. Meko, D. M., 2006: Tree-ring inferences on water-level fluctuations of lake Athabasca. Water Resources Journal, 31:229–48.10.4296/cwrj3104229
  56. Natlandsmyr, B., Hjelle, K. L., 2016: Long-term vegetation dynamics and land-use history: Providing a baseline for conservation strategies in protected Alnus glutinosa swamp woodlands. Forest Ecology and Management, 372:8–92.10.1016/j.foreco.2016.03.049
  57. Nave, C., Schwan, J., Werres, S., Riebesehl, J., 2021: Alnus glutinosa Threatened by Alder Phytophthora: A Histological Study of Roots. Pathogens, 10:977.10.3390/pathogens10080977840190134451441
  58. Nemesszeghy, L., 1986: Black Alder in Prekmurje. Pomurska založba. In Slovenian, 88 p.
  59. Neuner, S., Albrecht, A., Cullmann, D., Engels, F., Griess, V. C., Hahn, W. A. et al., 2015: Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Global Change Biology, 21:935–946.10.1111/gcb.1275125242342
  60. Oliveira, R. S., Castro, P. M. L., Dodd, J. C., Vosátka, M., 2005: Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere, 60:1462–1470.10.1016/j.chemosphere.2005.01.03816054916
  61. Paal, J., Rannik, R., Jeletsky, E. M., Prieditis, N., 2007: Floodplain forests in Estonia: typological diversity and growth conditions. Folia Geobotanica, 42:383–400.10.1007/BF02861701
  62. Palmer, M. A., Liermann, C. A. R., Nilsson, C., Florke, M., Alcamo, J., Lake, P. S. et al., 2008: Climate change and the world’s river basins: anticipating management options. Frontiers in Ecology and the Environment, 6:81–89.10.1890/060148
  63. Palmer, M. A., Lettenmaier, D. P., Poff, L. N., Postel, S. L., Ritcher, B., Warner, R. R., 2009: Climate change and river ecosystems: protection and adaptation options. Environmental Management, 44:1053–1068.10.1007/s00267-009-9329-119597873
  64. Piégay, H., Pautou, G., Ruffioni, C., 2003: Les forêts riveraines des cours d’eau. Ecologie, fonctions et gestion. Institut pour le développement forestier, Paris, 463 p.
  65. Pielech, R., 2015: Formalised classification and environmental controls of riparian forest communities in the Sudetes (SW Poland). Tuexenia, 35:155–176.
  66. Pielech, R., Anioł-Kwiatkowska, J., Szcześniak, E., 2015: Landscape-scale factors driving plant species composition in mountain streamside and spring riparian forests. Forest Ecology and Management, 347:217–227.10.1016/j.foreco.2015.03.038
  67. Pretzell, D., Knor, E. M., Reif, A., 1997: Degradation of alder swamp forest in the upper Rhine Valley (Degradation von Erlenbruchwaldern in der Oberrheinebene). Verhandlungen-Gesellschaft-fur-Okologie, 27:435–440.
  68. Pretzsch, H., Grams, T., Häberle, K.H., Pritsch, K., Bauerle, T., Rötzer, T., 2020a: Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees -Structure and Function, 34:957–970.10.1007/s00468-020-01973-0
  69. Pretzsch, H., Steckel, M., Heym, M., Biber, P., Ammer, C., Ehbrecht, M. et al., 2020b: Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. European Journal of Forest Research, 139:349–367.10.1007/s10342-019-01233-y
  70. Putalová, T., Vacek, Z., Vacek, S., Štefančík, I., Bulušek, D., Král, J., 2019: Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal, 65:21–33.10.2478/forj-2019-0004
  71. Quinn, F. H., Sellinger, C. E., 2006: A reconstruction of Lake Michigan-Huron water levels derived from tree ring chronologies for the period 1600–1961. Journal of Great Lakes Research, 32:29–39.10.3394/0380-1330(2006)32[29:AROLMW]2.0.CO;2
  72. Remeš, J., Bílek, L., Novák, J., Vacek, Z., Vacek, S., Putalová, T. et al., L., 2015: Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. Journal of Forest Science, 61:456–464.10.17221/75/2015-JFS
  73. Rodríguez-González, P. M., Ferreira, M. T., Ramil Rego, P., 2004: Northern Ibero-Atlantic wetland woods vegetation types and within-stand structure. Forest Ecology and Management, 203:261–272.10.1016/j.foreco.2004.07.068
  74. Rodríguez-González, P. M., Ferreira, M. T., Albuquerque, A., Espirito Santo, D., Ramil Rego, P., 2008: Spatial variation of wetland woods in the latitudinal transition to arid regions: a ultiscale approach. Journal of Biogeography, 35:1498–1511.10.1111/j.1365-2699.2008.01900.x
  75. Rodríguez-González, P. M., Stella, J.C., Campelo, F., Ferreira, M. T., Albuquerque, A., 2010: Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. Forest Ecology and Management, 259:2015–2025.10.1016/j.foreco.2010.02.012
  76. Rodríguez-González, P. M., Campelo, F., Albuquerque, A., Rivaes, R., Ferreira, T., Pereira, J. S., 2014: Sensitivity of black alder (Alnus glutinosa [L.] Gaertn.) growth to hydrological changes in wetland forests at the rear edge of the species distribution. Plant Ecology, 21:233–245.10.1007/s11258-013-0292-9
  77. Roy, S., Khasa, D. P., Greer, C. W., 2007: Combining alders, frankiae and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Canadian Journal of Botany, 85:237–251.10.1139/B07-017
  78. Rozas, V., 2005: Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: establishment patterns and the management history. Annals of Forest Science, 62:13–22.10.1051/forest:2004091
  79. Salca, E. A., 2019: Black alder (Alnus glutinosa L.) – a resource for value-added products in furniture industry under European screening. Current Forestry Reports, 5:41–54.10.1007/s40725-019-00086-3
  80. Sariyildiz, T., 2015: Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnus glutinosa, Picea orientalis and Pinus sylvestris) in Turkey. Forest Ecology and Management, 335:71–86.10.1016/j.foreco.2014.09.030
  81. Schnitzler, A., Carbiener, R., 1993: Les forêts galeries d’Europe. La Recherche 255:694–700.
  82. Schweingruber, F. H.,fEckstein, D., Serre-Bachet, F., Bräker, O. U., 1990: Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8:9–38.
  83. Seidl, R., Schelhaas, M. J., Rammer, W., Verkerk, P. J., 2014: Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4:806–810.10.1038/nclimate2318434056725737744
  84. Slezák, M., Hrivnák, R., Petrášová, A., 2014: Numerical classification of alder carr and riparian alder forests in Slovakia. Phytocoenologia, 44:283–308.10.1127/0340-269X/2014/0044-0588
  85. Slezák, M., Hrivnák, R., Machava, J., 2017: Environmental controls of plant species richness and species composition in black alder floodplain forests of central Slovakia. Tuexenia, 37:79–94.
  86. Socha, J., Ochał, W., 2017: Dynamic site index model and trends in changes of site productivity for Alnus glutinosa (L.) Gaertn. in southern Poland. Dendro-biology, 77:45–47.10.12657/denbio.077.004
  87. Šimůnek, V., Vacek, Z., Vacek, S., Ripullone, F., Hájek, V., D’Andrea, G., 2021: Tree Rings of European Beech (Fagus sylvatica L.) Indicate the Relationship with Solar Cycles During Climate Change in Central and Southern Europe. Forests, 12:259.10.3390/f12030259
  88. Šimůnek, V., Vacek, Z., Vacek, S., 2020: Solar cycles in salvage logging: National data from the Czech Republic confirm significant correlation. Forests, 11:973.10.3390/f11090973
  89. Tobita, H., Hasegawa, S. F., Tian, X., Nanami, S., Takeda, H., 2010: Spatial distribution and biomass of root nodules in a naturally regenerated stand of Alnus hirsuta (Turcz.) var. Sibirica. Symbiosis, 50:77–86.10.1007/s13199-009-0032-z
  90. Tulik, M., Grochowina, A., Jura-Morawiec, J., Bijak, S., 2020: Groundwater level fluctuations affect the mortality of black alder (Alnus glutinosa Gaertn.). Forests, 11:134.10.3390/f11020134
  91. Turok, J., Erikson, G., Kleinschmit, J., Canger, S., 1996: Noble Hardwoods Network. Report of the first meeting. International Plant Genetic Resources Institute, Rome, 179 p.
  92. Uri, V., Aosaar, J., Varik, M., Becker, H., Ligi, K., Padari, A. et al., 2014: The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana [L.] Moench) chronosequence stands in Estonia. Forest Ecology and Management, 327:106–117.10.1016/j.foreco.2014.04.040
  93. Vacek, S., Hůnová, I., Vacek, Z., Hejcmanová, P., Podrázský, V., Král, J. et al., 2015: Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic), 1979–2014. European Journal of Forest Research, 134:1127–1142.10.1007/s10342-015-0915-x
  94. Vacek, S., Černý, T., Vacek, Z., Podrázský, V., Mikeska, M., Králíček, I., 2017a: Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. Forest Ecology and Management, 398:75–90.10.1016/j.foreco.2017.05.001
  95. Vacek, Z., Vacek, S., Podrázský, V., Král, J., Bulušek, D., Putalová, T. et al., 2016: Structural diversity and production of alder stands on former agricultural land at high altitudes. Dendrobiology, 75:31–44.10.12657/denbio.075.004
  96. Vacek, Z., Vacek, S., Bulušek, D., Podrázský, V., Remeš, J., Král, J. et al., 2017b: Effect of fungal pathogens and climatic factors on production, biodiversity and health status of ash mountain forests. Dendrobiology, 77:1755–1315.10.12657/denbio.077.013
  97. Vacek, Z., Cukor, J., Vacek, S., Podrázský, V., Linda, R., Kovařík, J., 2018: Forest biodiversity and production potential of post-mining landscape: opting for afforestation or leaving it to spontaneous development? Central European Forestry Journal, 64:116–126.10.1515/forj-2017-0036
  98. Vacek, Z., Prokůpková, A., Vacek, S., Bulušek, D., Šimůnek, V., Hájek, V. et al., 2021a: Mixed vs. monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech. Forest Ecology and Management, 488:119019.10.1016/j.foreco.2021.119019
  99. Vacek, Z., Linda, R., Cukor, J., Vacek, S., Šimůnek, V., Gallo, J. et al., 2021b: Scots pine (Pinus sylvestris L.), the suitable pioneer species for afforestation of reclamation sites? Forest Ecology and Management, 485:118951.10.1016/j.foreco.2021.118951
  100. Vacek, Z., Cukor, J., Vacek, S., Linda, R., Prokůpková, A., Podrázský, V. et al., 2021c: Production potential, biodiversity and soil properties of forest reclamations: Opportunities or risk of introduced coniferous tree species under climate change? European Journal of Forest Research, 140:1243–1266.10.1007/s10342-021-01392-x
  101. Valor, T., Camprodon, J., Buscarini, S., Casals, P., 2020: Drought-induced dieback of riparian black alder as revealed by tree rings and oxygen isotopes. Forest Ecology and Management, 478:118500.10.1016/j.foreco.2020.118500
  102. van der Maaten, E., van der Maaten Theunissen, M., Buras, A., Scharnweber, T., Simard, S., Kaiser, K. et al., 2015: Can We Use Tree Rings of Black Alder to Reconstruct Lake Levels? A Case Study for the Mecklenburg Lake District, Northeastern Germany. PLoS ONE, 10:e0137054.10.1371/journal.pone.0137054455279126317768
  103. Vogel, C. S., Curtis, P. S., Thomas, R. B., 1997: Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. Plant Ecology, 130:63–70.10.1023/A:1009783625188
  104. Waring, R. H., 1987: Characteristics of trees predisposed to die. Bioscience, 37:569–574.10.2307/1310667
  105. Webster, K. E., Soranno, P. A., Baines, S. B., Kratz, T. K., Bowser, C. J., Dillon, P. J. et al., 2000: Structuring features of lake districts: landscape controls on lake chemical responses to drought. Freshwater Biology, 43:499–515.10.1046/j.1365-2427.2000.00571.x
  106. Whitehead, D., 1998: Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiology, 18:633–644.10.1093/treephys/18.8-9.63312651352
  107. Wiles, G. C., Krawiec, A. C., D’Arrigo, R. D., 2009: A 265-year reconstruction of Lake Erie water levels based on North Pacific tree rings. Geophysical Research Letters, 36:L05705.10.1029/2009GL037164
  108. WRB, 2014: World Reference Base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report, 106:1–203.
  109. Yamaguchi, D. K., 1991: A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21:414–416.10.1139/x91-053
  110. Zhang, W. T., Jiang, Y., Dong, M. Y., Kang, M. Y., Yang, H. C., 2012: Relationship between the radial growth of Picea meyeri and climate along elevations of the Luyashan Mountain in North-Central China. Forest Ecology and Management, 265:142–149.10.1016/j.foreco.2011.10.017
DOI: https://doi.org/10.2478/forj-2022-0003 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 139 - 153
Published on: Aug 23, 2022
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Zdeněk Vacek, Stanislav Vacek, Jan Cukor, Daniel Bulušek, Martin Slávik, Ivan Lukáčik, Igor Štefančík, Zuzana Sitková, Derya Eşen, Francesco Ripullone, Oktay Yildiz, Murat Sarginci, Giuseppe D’Andrea, Andrew Weatherall, Václav Šimůnek, Vojtěch Hájek, Ivo Králíček, Romana Prausová, Anna Bieniasz, Anna Prokůpková, Tereza Putalová, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.