Have a personal or library account? Click to login

Impact of the European bark beetle Ips typographus on biochemical and growth properties of wood and needles in Siberian spruce Picea obovata

Open Access
|Dec 2020

References

  1. Abdullah, H., Skidmore, A. K., Darvishzadeh, R., Heu-rich, M., 2019: Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus L.) compared with Landsat-8. Remote Sensing in Ecology and Conservation, 5:87–106.10.1002/rse2.93
  2. Arkhipova, N. G., 2013: The problem of spruce (Picea abies [L.] Karst.) decline in Latvia. Proc. of Problem of Spruce Forests Decline. Mogilev Belarus‘Belforestprotection’ Minsk, 11 p.
  3. Babkin, V. A., 2017: Extractive things of larch wood: Chemical composition, biological activity, prospects for practical use. Innovation and Expertise, 2:210–223.
  4. Chen, J., Li, L., Milesi, P., Jansson, G., Berlin, M., Karlsson, B. et al., 2019: Genomic data provides new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evolutionary Applications, 12:1539–1551.10.1111/eva.12801670842331462913
  5. Chuprov, N. P., 2008: About problem of spruce decay in European North of Russia. Russian forestry, 1:24–6.
  6. DeRose, R. J., Long, J. N., 2007: Disturbance, structure, and composition: spruce beetle and Engelmann spruce forests on the Markagunt Plateau, Utah. Forest Ecology and Management, 244:16–23.10.1016/j.foreco.2007.03.065
  7. Dowd, P. F., 2018: Detoxification of plant substances by insects. In: Morgan, D. E., Mandava, N. B. (eds): CRC Handbook of natural pesticides, vol. 6. CRC Press, Boca Raton, USA.
  8. Felicijan, M., Kristl, J., Krajnc, A. U., 2016: Pre-treatment with salicylic acid induces phenolic responses of Norway spruce (Picea abies) bark to bark beetle (Ips typographus) attack. Trees, 30:2117–2129.10.1007/s00468-016-1438-x
  9. Fedorova, T. E., Fedorov, S. V., Babkin, V. A., 2016: Oligolignans in the wood of Picea obovata Ledeb. Russian Journal of Bioorganic Chemistry, 42:712–715.10.1134/S1068162016070062
  10. Furniss, M., Solhheim, H., Christiansen, E., 1990: Transmission of blue-stain fungi by Ips typographus (Cole-optera: Scolytidae) in Norway spruce. Annals of the Entomological Society of America, 83:712–716.10.1093/aesa/83.4.712
  11. Gavrilenko, V. F., Zhigalova, T. V., 2003. Large Practical Manual on Photosynthesis. Moscow, Academia, p. 42–58.
  12. Gärtner, H., Heinrich, I., 2009: The formation of traumatic rows of resin ducts in Larix decidua and Picea abies (Pinaceae) as a result of wounding experiments in the dormant season. IAWA Journal, 30:199–215.10.1163/22941932-90000215
  13. Gninenko, Y. I., Hegay, I. V., 2018: Dynamics if spruce forests die-back in Moscow region. Forest management information, 2:65–74.
  14. Goeffrey, D., 2016: Fungal degradation of wood cell walls. In: Kim, Y.S., Funada, R., Singh, A. P. (eds.): Secondary xylem biology. Origins, functions and applications. Academic Press in an Imprint of Elsevier, London, p. 131–167.10.1016/B978-0-12-802185-9.00008-5
  15. Gourlay, G., Constabel, C. P., 2019: Condensed tannins are inducible antioxidants and protect hybrid poplar against oxidative stress. Tree Physiology, 39:345–355.10.1093/treephys/tpy14330917196
  16. Grodzki, W., 2010: The decline of Norway spruce Picea abies (L.) Karst stands in Beskid Śląski and Żywiecki: Theoretical concept and reality. Beskydy, 3:19–26.
  17. Hammerbacher, A., Raguschke, B., Wright, L. P., Gershenzon, J., 2018: Gallocatechin biosynthesis via a flavonoid 3’, 5’-hydroxylase is a defense response in Norway spruce against infection by the bark beetle-associated sap-staining fungus Endoconidiophora polonica. Phytochemistry, 148:78–86.10.1016/j.phytochem.2018.01.01729421514
  18. Hicke, J. A., Allen, C. D., Desai, A. R., Dietze, M. C., Hall, R.J., Ted Hogg, E. H. et al., 2012: Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 18:7–34.10.1111/j.1365-2486.2011.02543.x
  19. Hlásny, T., Sitková, Z., 2010: Spruce forests decline in the Beskids. National Forest Centre, Forest Research Institute Zvolen, Czech University of Life Sciences Prague, Forestry and Game Management Research Institute Jíloviště-Strnady, Zvolen, NLC, 182 p.
  20. Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J. et al., 2014: Climate change increases the drought risk in Central European forests: What are the options for adaptation? Forestry Journal, 60:5–18.10.2478/forj-2014-0001
  21. Hofstetter, R. W., Dinkins-Bookwalter, J., Davis, T. S., Klepzig, K. D., 2015: Symbiotic Associations of Bark Beetles. In: Vega, F. E, Hofstetter, R. W. (eds.): Bark Beetles, Academic Press, p. 209–245.10.1016/B978-0-12-417156-5.00006-X
  22. Hood, S., Sala, A., Heyerdahl, E. K., Boutin, M., 2015: Low-severity fire increases tree defense against bark beetle attacks. Ecology, 96:1846–1855.10.1890/14-0487.126378307
  23. Kharuk, V. I., Im, S. T., Dvinskaya, M. L., Golukov, A. S., Ranson, K. J., 2015: Climate-induced mortality of spruce stands in Belarus. Environmental Research Letters, 10:125006.10.1088/1748-9326/10/12/125006
  24. Kirisits, T., 2010: Fungi isolated from Picea abies infested by the bark beetle Ips typographus in the Białowieża forest in North-Eastern Poland. Forest Pathology, 40:100–110.10.1111/j.1439-0329.2009.00613.x
  25. Krokene, P., Solheim, H., 1996: Fungal associates of five bark beetle species colonizing Norway spruce. Cannadian Journal of Forest Research, 26:2115– 2122.10.1139/x26-240
  26. Krutovskii, K. V., Bergmann, F., 1995: Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity, 74:464–480.10.1038/hdy.1995.67
  27. Larsson, S., 2002: Resistance in trees to insects – an overview of mechanisms and interactions. In: Wagner, M. R., Clancy, K. M., Lieutier, F., Painem, T. D. (eds.): Mechanisms and deployment resistance in trees to insects. New York,Kluwer Academic Publisher, p. 1–29.10.1007/0-306-47596-0_1
  28. Lee, M., Jeon, H. S., Kim, S. H., Chung, J. H., Roppolo, D., Lee, H. et al., 2019: Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. The EMBO Journal, 38 p.10.15252/embj.2019101948688573631559647
  29. Lieu, P., Kelsey, R., Shfizadeh, F., 1979: Some chemical characteristics of green and dead lodgepole pine and western white pine. USDA Forest Service, Inter-mountain Forest and Range Experiment Station, Ogden, UT, 8 p.
  30. Lockwood, J. L., Hoopes, M. F., Marchetti, M. P., 2013: Invasion ecology. Chichester, Wiley-Blackwell, 466 p.
  31. Lombardero, M. J., Ayres, M. P., Lorio, P. L., Ruel, J. J., 2000: Environmental effects on constitutive and inducible resin defences of Pinus taeda. Ecology Letters, 3:329–339.10.1046/j.1461-0248.2000.00163.x
  32. Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J. C., Pretzsch, H., 2012: Growth and defence in plants: Resource allocation at multiple scales. Berlin, Heidelberg, Springer Berlin Heidelberg, 139 p.10.1007/978-3-642-30645-7
  33. Parpan, V. I., Shparyk, Y. S., Slobodyan, P., Parpan, T., Korshov, V., Brodovich, R. et al., 2014: Forest management peculiarities in secondary Norway spruce (Picea abies [L.] H. Karst.) stands of the Ukrainian Carpathian, Proceedings of the Forestry Academy of Sciences of Ukraine, Collection of Research Papers, 12:178−185.
  34. Poncet-Legrand, C., Cabane, B., Bautista-Ortín, A. B., Carrillo, S., Fulcrand, H., Peréz, J. et al., 2010: Tannin Oxidation: Intra- versus intermolecular reactions. Biomacromolecules, 11:2376–2386.10.1021/bm100515e20831276
  35. Pureswaran, D. S., Roques, A., Battisti, A., 2018: Forest Insects and Climate Change. Current Forestry Reports, 4:35–50.10.1007/s40725-018-0075-6
  36. Salminen, J. P., Karonen, M., 2011: Chemical ecology of tannins and other phenolics: We need a change in approach. Functional Ecology, 25:325–338.10.1111/j.1365-2435.2010.01826.x
  37. Solheim, H., 1992: Fungal succession in sapwood of Norway spruce infested by the bark beetle Ips typographus. European Journal of Forest Pathology, 22:136–148.10.1111/j.1439-0329.1992.tb01440.x
  38. Stoffel, M., Hitz, O. M., 2008: Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua. Tree Physiology, 28:1713–1720.10.1093/treephys/28.8.1713
  39. Thoss, V., Byers, J. A., 2006: Monoterpene chemodiversity of ponderosa pine in relation to herbivory and bark beetle colonization. Chemoecology, 16:51–58.10.1007/s00049-005-0331-7
  40. Vasiljuskas, V., 2013: Decline of spruce forest in Lithuania and its causes. Proc. of Problem of spruce forests decline, Mogilev Belarus ‘Belforestprotection’ Minsk, p. 6–10.
  41. Viiri, H., Lieutier, F., 2004: Ophiostomatoid fungi associated with the spruce bark beetle, Ips typographus, in three areas in France. Annals of Forest Science, 61:215–219.10.1051/forest:2004013
  42. Watson, P., 2006: Impact of the mountain pine beetle on pulp and papermaking. In: Safranyik, L., Wilson, B. (eds.): The mountain pine beetle. A synthesis of biology, management, and impacts on lodgepole pine. Victoria, British Columbia, Pacific Forest Centre, p. 255–275.
  43. Wermelinger, B., 2004: Ecology and management of the spruce bark beetle Ips typographus–a review of recent research. Forest Ecology and Management, 202:67–82.10.1016/j.foreco.2004.07.018
  44. Young, A. J, Britton, G., Senser, M., 1990: Carotenoid composition of needles of Picea abies L. showing signs of photodamage. Verlag der Zeitschrift für Naturforschung 45c:1100–1111.10.1515/znc-1990-11-1206
  45. Zabel, R. A., Morrell, J. J., 1992: Wood microbiology: decay and its prevention. New York, Academic Press, 476 p.
  46. Zamolodchikov, D. G., Grabovskii, V. I., Kraev, G. N., 2011: A twenty-year retrospective on the forest carbon dynamics in Russia. Contemporary Problems of Ecology, 4:706–715.10.1134/S1995425511070022
  47. Zeneli, G., Krokene, P., Christiansen, E., Krekling, T., Gershenzon, J., 2006: Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiology, 26:977–988.10.1093/treephys/26.8.97716651247
  48. Zhao, T., Krokene, P., Hu, J., Christiansen, E., Björk-lund, N., Långström, B. et al., 2011. Induced terpene accumulation in Norway Spruce inhibits bark beetle colonization in a dose-dependent manner. PLoS ONE, 6: e26649.10.1371/journal.pone.0026649319756822028932
  49. Zhao, T., Kandasamy, D., Krokene, P., Chen, J., Gershenzon, J., Hammerbacher, A., 2019: Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecology, 38:71–79.10.1016/j.funeco.2018.06.003
DOI: https://doi.org/10.2478/forj-2020-0025 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 243 - 254
Published on: Dec 2, 2020
Published by: National Forest Centre – Forest Research Institute Zvolen
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Alena Konôpková, Konstantin E. Vedernikov, Egor A. Zagrebin, Nadezhda A. Islamova, Roman A. Grigoriev, Hana Húdoková, Anja Petek, Jaroslav Kmeť, Peter Petrík, Anna S. Pashkova, Anastasia N. Zhuravleva, Irina L. Bukharina, published by National Forest Centre – Forest Research Institute Zvolen
This work is licensed under the Creative Commons Attribution 4.0 License.