Have a personal or library account? Click to login
Silver birch aboveground biomass allocation pattern, stem and foliage traits with regard to intraspecific crown competition Cover

Silver birch aboveground biomass allocation pattern, stem and foliage traits with regard to intraspecific crown competition

Open Access
|Aug 2020

References

  1. Barna, M., 2004: Adaptation of European beech (Fagus sylvatica L.) to different ecological conditions: leaf size variation. Polish Journal of Ecology, 52:35–45.
  2. Bloom, A. J., Chapin, F. S., Mooney, H. A., 1985: Resource limitation in plants – an economic analogy. Annual Re view of Ecology and Systematics, 16:363–392.10.1146/annurev.es.16.110185.002051
  3. Bošeľa, M., Konôpka, B., Šebeň, V., Vladovič, J., Tobin, B., 2014: Modelling height to diameter ratio - An opportunity to increase Norway spruce stand stability in the Western Carpathians. Lesnícky časopis – Forestry Journal, 60:71–80.10.2478/forj-2014-0007
  4. Bronisz, K., Strub, M., Cieszewski, Ch., Bijak, S., Bronisz, A., Tomusiak, R. et al., 2016: Empirical equations for estimating aboveground biomass of Betula pendula growing on former farmland in central Poland. Silva Fennica, 50:1–17.10.14214/sf.1559
  5. Bussotti, F., Borghini, F., Celesti, C., Leonzio, C., Bruschi, P., 2000: Leaf morphology and macronutrients in broadleaved trees in central Italy. Trees, 14:361–368.10.1007/s004680000056
  6. Cotrufo, M. F., Ineson, P., Roberts, D., 1995: Decomposition of birch leaf litters with varying C-to-N ratios. Soil Biology and Biochemistry, 27:1219–1221.10.1016/0038-0717(95)00043-E
  7. Claesson, S., Sahlén, K., Lundmark, T., 2001: Functions for biomass estimation of young Pinus sylvestris, Picea abies and Betula spp. from stands in northern Sweden with high stand densities. Scandinavian Journal of Forest Research, 16:138–146.10.1080/028275801300088206
  8. Closa, I., Irigoyen, J. J., Goicoechea, N., 2010: Microclimatic conditions determined by stem density influence leaf anatomy and leaf physiology of beech (Fagus sylvatica L.) growing within stands that naturally regenerate from clear-cutting. Trees, 24:1029–1043.10.1007/s00468-010-0472-3
  9. Deng, J. M., Wang, G. X., Morris, E. C., Wei, X. P., Li, D. X., Chen, B. M. et al., 2006: Plant mass–density relationship along a moisture gradient in north-west China. Journal of Ecology, 94:953–958.10.1111/j.1365-2745.2006.01141.x
  10. Easlon, H. M., Bloom, A. J., 2014: Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2:1400033.10.3732/apps.1400033410347625202639
  11. Eriksson, H., Johansson, U., Kiviste, A., 1997: A site-index model for pure and mixed stands of Betula pendula and Betula pubescens in Sweden. Scandinavian Journal of Forest Research, 12:149–156.10.1080/02827589709355396
  12. Finďo, S., Petráš, R., 2007: Ekologické základy ochrany lesa proti poškodeniu zverou. Zvolen, National Forest Centre, 186 p.
  13. Friedlingstein, P., Joel, G., Field, C. B., Fung, I. Y. 1999: Toward an allocation scheme for global terrestrial carbon models. Global Change Biology, 5:755–770.
  14. Harrington, T. B., Harrington, C. A., DeBell, D., 2009: Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Ecology and Management, 258:18–25.10.1016/j.foreco.2009.03.039
  15. Hochbichler, E., Bellos, P., Lick, E., 2006: Biomass functions for estimating needle and branch biomass of spruce (Picea abies) and Scots pine (Pinus sylvestris) and branch biomass of beech (Fagus sylvatica) and oak (Quercus robur and petrea). Austrian Journal of Forest Sciences, 123:35–46.
  16. Hommel, R., Siegwolf, R., Zavadlav, S., Arend, M., Schaub, M., Galiano, L. et al., 2016: Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biology, 18:785–796.10.1111/plb.1246127061772
  17. Hynynen, J., Niemistö, P., Viherä-Aarnio, A., Brunner, A., Hein, S., Velling, P., 2010: Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry, 83:103–119.10.1093/forestry/cpp035
  18. Jagodzinski, A. M., Zasada, M., Bronisz, K., Bronisz, A., Bijak, S., 2017: Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. Forest Ecology and Management, 384:208–220.10.1016/j.foreco.2016.10.051
  19. Johansson, T., 1999: Biomass production of Norway spruce (Picea abies [L.] Karst.) growing on abandoned farmland. Silva Fennica, 33:261–280.10.14214/sf.649
  20. Johansson, T., 2007: Biomass production and an allo-metric above- and below-ground relations for young birch stands planted at four spacings abandoned farmland. Forestry, 80:41–52.10.1093/forestry/cpl049
  21. Kacálek, D., Mauer, O., Podrázský, V., Slodičák, M. et al., 2017: Soil improving and stabilizing functions of forest trees. Lesnická práce, 300 p.
  22. Konôpka, B., Konôpka, J., 2003: Static stability of forest stands in the seventh altitudinal vegetation zone in Slovakia. Journal of Forest Science, 49:474–481.10.17221/4719-JFS
  23. Konôpka, B., Pajtík, J., Marušák, R., Bošeľa, M., Lukac, M., 2016: Specific leaf area and leaf area index in developing stands of Fagus sylvatica L. and Picea abies Karst. Forest Ecology and Management, 364:52–59.10.1016/j.foreco.2015.12.005
  24. Konôpka, B., Pajtík, J., Máliš, F., Šebeň, V., Maľová, M., 2017: Carbon stock in aboveground biomass of vegetation at the High Tatra Mts. twelve years after disturbance. Central European Forestry Journal, 63:142–151.10.1515/forj-2017-0007
  25. Konôpka, B., Šebeň, V., Pajtík, J., 2019: Species composition and carbon stock of tree cover at a postdisturbance area in Tatra National Park, Western Carpathians. Mountain Research and Development, 39:71–80.10.1659/MRD-JOURNAL-D-19-00008.1
  26. Kula, E., 2011: Bříza a její význam pro trvalý rozvoj lesa v imisných oblastech. Prague, Publishing House for Forestry, 276 p.
  27. Kunca, A., Zúbrik, M., Galko, J., Vakula, J., Leontovyč, R., Konôpka, B. et al., 2019: Salvage felling in the Slovak Republic′s forests during the last twenty years (1998–2017). Central European Forestry Journal, 1:3–11.10.2478/forj-2019-0007
  28. Kund, M., Vares, A., Sims, A., Tullus, H., Uri, V., 2010: Early growth and development of silver birch (Betula pendula Roth) plantations on abandoned agricultural land. European Journal of Forest Research, 129:679–688.10.1007/s10342-010-0369-0
  29. Kurvits, V., Ots, K., Kangur, A., Korjus, H., Muiste, P., 2020: Assessment of load and quality of logging residues from clear-felling areas in Järveselja: a case study from Southeast Estonia. Central European Forestry Journal, 66:3–11.10.2478/forj-2019-0022
  30. Lehtonen, A., Mäkipää, R., Heikkinen, J., Sievänen, J., Liski, J., 2004: Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management, 188:211–224.10.1016/j.foreco.2003.07.008
  31. Le Roux, X., Lacointe, A., Escobar-Gutierrez, A., Le Dizes, S., 2001: Carbon-based models of individual tree growth: A critical appraisal. Annals of Forest Science, 58:469–506.10.1051/forest:2001140
  32. Martiník, A., Knott, R., Krejza, J., Černý, J., 2018: Bio-mass production of Betula pendula stands regenerated in the region of allochthonous Pice abies dieback. Silva Fennica, 52:1–15.10.14214/sf.9985
  33. Mäkinen, H., Nöjd, P., Isomäki, A., 2002: Radial, height and volume increment variation in Picea abies (L.) Karst. stands with varying thinning intensities. Scandinavian Journal of Forest Research, 2:227–228.10.1080/02827580260138062
  34. Mensah, S., Kakai, R.G., Seifert, T., 2016: Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits. Annals of Forest Research, 59:49–60.10.15287/afr.2016.458
  35. Merganičová, K., Merganič, J., Lehtonen, A., Vacchiano, A., Ostrogović-Sever, M.Z., Augustynczik, A.L.D. et al., 2019: Forest carbon allocation modelling under climate change. Tree Physiology, 39:1937–1960.10.1093/treephys/tpz105699585331748793
  36. Milla, R., Reich, P.B., Niinemets, U., Castro-Diez, P., 2008: Environmental and developmental controls on specific leaf area are little modified by leaf allometry. Functional Ecology, 22:565–576.10.1111/j.1365-2435.2008.01406.x
  37. Nilsson, U., 1993: Competition in young stands of Norway spruce and Scots pine. Swedish University of Agricultural Sciences, Uppsala, PhD. Thesis, 173 p.
  38. Niinemets, Ü., Ellsworth, D.S., Lukjanova, A., Tobias, M., 2001: Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology, 21:1231–1244.10.1093/treephys/21.17.1231
  39. Niinemets, U., Portsmuth, A., Tobias, M., 2007: Leaf Shape and Venation Pattern Alter the Support Investments within Leaf Lamina in Temperate Species: A Neglected Source of Leaf Physiological Differentiation, Functional Ecology, 21:28–40.10.1111/j.1365-2435.2006.01221.x
  40. Oker-Blom, P., Kellomäki, S., Valtonen, E., Väisänene, H., 1988: Structural development of Pinus sylvestris stands with varying initial density: a simulation model. Scandinavian Journal of Forest Research, 3:185–200.10.1080/02827588809382508
  41. Opio, C., Jacob, N., Coopersmith, D., 2000: Height to diameter ratio as a competition index for young conifer plantations in northern British Columbia, Canada. Forest Ecology and Management, 137:245–252.10.1016/S0378-1127(99)00312-6
  42. Pajtík, J., Konôpka, B., Lukac, M., 2008: Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256:1096–1103.10.1016/j.foreco.2008.06.013
  43. Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., Mommer, L., 2012: Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193:30–50.10.1111/j.1469-8137.2011.03952.x22085245
  44. R Development Core Team, 2012: R: A Language and Environment for Statistical Computing. Vienna: R foundation for Statistical Computing. Webpage: http://www.R-project.org/
  45. Repola, J., 2008: Biomass equations for birch in Finland. Silva Fennica, 42:605–624.10.14214/sf.236
  46. Richardson, A. D., Carbone, M. S., Huggett, B. A., Furze, M. E., Czimczik, C. I., Walker, J. C. et al., 2015: Distribution and mixing of old and new nonstructural carbon in two temperate trees. New Phytologist, 206:590–597.10.1111/nph.13273440504825558814
  47. San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Dur-rant, T.H. et al., 2016: European Atlas of Forest Tree Species. Luxembourg, Publication Office of European Union, 200 p.
  48. Schua, K., Wende, S., Wagner, S., Feger, K.-H., 2015: Soil chemical and microbial properties in a mixed stand of spruce and birch in the Ore Mountains (Germany) – A case study. Forests, 6:1949–1965.10.3390/f6061949
  49. Sebastia, M.-T., 2007: Plant guilds drive biomass response to global warming and water availability in subalpine grassland. Journal of Applied Ecology, 44:158–167.10.1111/j.1365-2664.2006.01232.x
  50. Seidl, R., Schelhaas, M.-J., Rammer, W., Verkerk, P.J., 2014: Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4:806–810.10.1038/nclimate2318
  51. Sharma, R.P., Vacek, Z., Vacek, S., 2016: Modeling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic. Trees, 30:1969–1982.10.1007/s00468-016-1425-2
  52. Shipley, B., 2006: Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology, 20:565–574.10.1111/j.1365-2435.2006.01135.x
  53. Snowdon, P., Waring, H. D., Woollons, R. C., 1981: Effect of fertilizer and weed control on stem form and average taper in plantation-grown pines. Australian Forestry Journal, 11:209–221.
  54. Song, M., Hu, Q., Tian, Y., Ouyang, H., 2012: Seasonal patterns of root and shoot interactions in an alpine meadow on the Tibetan Plateau. Journal of Plant Ecology 5:182–190.10.1093/jpe/rtq032
  55. Stark, H., Nothdurft, A., Bauhus, J., 2013: Allometries for widely spaced Populus ssp. and Betula ssp. in nurse crop systems. Forests, 4:1003–1031.10.3390/f4041003
  56. Šebeň, V., 2017: Národná inventarizácia a monitoring lesov Slovenskej republiky 2015–2016. Lesnícke štúdie 65, Zvolen, National Forest Centre, 255 p.
  57. Uri, V., Lohmus, K., Ostonen, I., Tullus, H., Lastik, R., Vildo, M., 2007: Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land. European Journal of Forest Research, 126:495–506.10.1007/s10342-007-0171-9
  58. Valkonen, S., Valsta, L., 2001: Productivity and economics of mixed two-storied spruce and birch stands in Southern Finland simulated with empirical models. Forest Ecology and Management, 140:133–149.10.1016/S0378-1127(00)00321-2
  59. Vološčuk, I. et al., 1994: Tatra National Park. Martin, Slovakia: Gradus, Ltd., 557 p.
  60. Wang, Y., Titus, S. J., LeMay, V. M., 1998: Relationship between tree slenderness coefficient and tree or stand characteristics for major species in boreal mixed wood forests. Canadian Journal of Forest Research, 28:1171–1183.10.1139/x98-092
  61. Wang, J., Zhang, C., Xia, F., Zhao, X., Wu, L., von Gadow, K., 2011: Biomass Structure and Allometry of Abies nephrolepis (Maxim) in Northeast China. Silva Fennica, 45:211–226.10.14214/sf.113
  62. Wiklund, K., Konôpka, B., Nilsson, L.-O., 1995: Stem form and growth in Picea abies (L.) Karst. In response to water and mineral nutrient availability. Scandinavian Journal of Forest Research, 10:326–332.10.1080/02827589509382899
  63. Yang, X.-Z., Zhang, W. H., He, Q. Y., 2019: Effects of intraspecific competition on growth, architecture and biomass allocation of Quercus liaotungensis. Journal of Plant Interactions, 14:284–294.10.1080/17429145.2019.1629656
  64. Zasada, M., Bijak, S., Bronisz, K., Bronisz, A., Gaweda, T., 2014: Biomass dynamics in young silver birch stands on post-agricultural lands in central Poland. Drewno, 57:29–39.
  65. Zhou, W., Cheng, X., Wu, R., Han, H., Kang, F., Zhu, J. et al., 2018: Effect of intraspecific competition on biomass partitioning of Larix principis-rupprechtii. Journal of Plant Interactions, 13:1–8.10.1080/17429145.2017.1406999
DOI: https://doi.org/10.2478/forj-2020-0013 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 159 - 169
Published on: Aug 24, 2020
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Bohdan Konôpka, Jozef Pajtík, Vladimír Šebeň, Katarína Merganičová, Peter Surový, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.