Have a personal or library account? Click to login
The vertical accuracy of digital terrain models derived from the close-range photogrammetry point cloud using different methods of interpolation and resolutions Cover

The vertical accuracy of digital terrain models derived from the close-range photogrammetry point cloud using different methods of interpolation and resolutions

Open Access
|Nov 2019

References

  1. Affek, A., Zachwatowicz, M., Sosnowska, A., Gerlée, A., Kiszka, K., 2017: Impacts of modern mechanised skidding on the natural and cultural heritage of the Polish Carpathian Mountains. Forest Ecology and Management, 405:391–403.10.1016/j.foreco.2017.09.047
  2. Agisoft LLC, 2016: Agisoft Photoscan 1.2.4. build 2336. St. Petersburg. Russia: Agisoft LLC 11 Degtyarniy pereulok.
  3. Akar, A., 2017: Evaluation of vertical accuracy of DEMs obtained from UAV-point cloud for different topo-graphical areas. International Journal of Engineering and Geosciences, 2:110–117.10.26833/ijeg.329717
  4. Alganci, U., Besol, B., Sertel, E., 2018: Vertical accuracy Assessment of Different Digital Surface Models. ISPRS International Journal of Geo-Information, 7, 114 p.10.3390/ijgi7030114
  5. Arun, V. P., 2013: A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Sciences, 16:133–139.10.1016/j.ejrs.2013.09.001
  6. Bassett, I. E., Simcock, R. C., Mitchell, N. D., 2005: Consequences of soil compaction for seedling establishment: implications for natural regeneration and restoration. Austral Ecology, 30:827–833.10.1111/j.1442-9993.2005.01525.x
  7. Cambi, M., Hoshika, Y., Mariotti, B., Paoletti, E., Picchio, R., Rachele, R. et al., 2016: Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. Forest Ecology and Management, 384:406–414.10.1016/j.foreco.2016.10.045
  8. Christopher, E. A., Visser, R., 2007: Methodology for evaluating post-harvest erosion risk for the protection of water quality. New Zealand Journal of Forestry, 52:20–25.
  9. Chudý, F., Slámová, M., Tomaštík, J., Prokešová, R., Mokroš, M., 2019: Identification of Micro-Scale Landforms of Landslides Using Precise Digital Elevation Models. Geosciences, 9:117.10.3390/geosciences9030117
  10. Eltner, A., Mulsow, C., Maas, H. G., 2013: Quantitative measurement of soil erosion from TLS and UAV data. In: International Archives of the Photogrammetry, UAV-g2013, 4 – 6 September 2013, Rostock, Germany. Remote Sensing and Spatial Information Sciences, XL–1/W2:119–124.10.5194/isprsarchives-XL-1-W2-119-2013
  11. ESRI, 2013: ArcGIS Desktop, Release 10.2. Redlands, CA: Environmental Systems Research Institute.
  12. Gašparović, M., Seletković, A., Berta, A., Balenović, I., 2017: The Evaluation of Photogrammetry-Based DSM from Low-Cost UAV by LiDAR-Based DSM. South-east European Forestry, 8:117–125.10.15177/seefor.17-16
  13. Gebauer, R., Neruda, J., Ulrich, R., Martinková, M., 2012: Soil compaction – impact of harvesters’ and forwarders’ passages on plant growth, sustainable forest management - Current Research, (Diez J, ed), InTech, 10, p. 179-196. ISBN 978-953-51-0621-0.
  14. Gessesse, D. G., Fuchs, H., Mansberger, R., Klik, A., Rieke-Zapp, H. D., 2010. Assessment of Erosion, Deposition and Rill Development On Irregular Soil Surfaces Using Close Range Digital Photogrammetry. The Photogrammetric Record, 25:299–318.10.1111/j.1477-9730.2010.00588.x
  15. Goetz, J., Brenning, A., Marcer, M., Bodin, X., 2018: Modeling the precision of structure-from-motion multi-view stereo digital elevation models from repeated close-range aerial surveys. Remote Sensing of Environment, 210:208–215.10.1016/j.rse.2018.03.013
  16. Haas, J., Ellhöft, H. K., Schack-Kirchner, H., Lang, F., 2016: Using photogrammetry to assess rutting caused by a forwarder – A comparison of different tires and bogie tracks. In Soil & Tillage Research, 163:14–20.10.1016/j.still.2016.04.008
  17. Heninger, R., Scott, W., Dobkowski, A., Miller, R. Anderson, H., Duke, S., 2002: Soil disturbance and 10-year growth response of coast Douglas-fir on nontilled and tilled skid trails in the Oregon Cascades. Canadian Journal of Forest Research, 32:233–246.10.1139/x01-195
  18. Hrůza, P., Mikita, T., Tyagur, N., Krejza, Z., Cibulka, M., Procházková, A. et al., 2018: Detecting Forest Road Wearing Course Damage Using Different Methods of Remote Sensing. Remote Sensing, 10:492.10.3390/rs10040492
  19. Isenburg, M., 2016: LAStools – efficient LiDAR processing software, version 160429 (unlicensed), obtained from http://rapidlasso.com/LAStools.
  20. Jakobsen, B. F., Greacen, E. L., 1985: Compaction of sandy forest soils by forwarder operations. Soil and Tillage Research, 5:55–70.10.1016/S0167-1987(85)80016-7
  21. Liu, C. W., Huang, C. W., 2016: Close range digital photogrammetry applied to topography and landslide measurements. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016, XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic.10.5194/isprsarchives-XLI-B5-875-2016
  22. Mandlburger, G., Otepka, J., Karel, W., Wagner, W., Pfeifer, N., 2009: Orientation and Processing Of Airborne Laser Scanning Data (OPALS) - Concept and first results of a comprehensive ALS software. In: Bretar F., Pierrot-Deseiligny M., Vosselman G. (eds.): The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII, Part 3/W8. Paris, Sept 1–2, 2009, p. 55–60.
  23. Modrý, M., Hubený, D., 2003: Impact of skidder and high-lead system logging on forest soils and advanced regeneration. Journal of Forest Science, 49:273–280.10.17221/4701-JFS
  24. Mölg, N., Bolch, T., 2017: Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sensing, 9:1021.10.3390/rs9101021
  25. Niederheiser, R., Mokroš, M., Lange, J., Petschko, H., Prasicek, G. Elberink, O. S., 2016: Deriving 3D point clouds from terestrial photographs – Comparison of different sensors and software. In: The International Archives of the Photogrammetry, XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic. Remote Sensing and Spatial Information Sciences, 41: 685–692.10.5194/isprsarchives-XLI-B5-685-2016
  26. Otepka, J., Mandlburger, G., Karel, W., 2012: The OPALS Data Manager – Efficient Data Management for Processing Large Airborne Laser Scanning Projects. ISPRS Annals, Comm. III, 1–3:153–159.10.5194/isprsannals-I-3-153-2012
  27. Pfeifer, N., Mandlburger, G., Otepka, J., Karel, W., 2014: OPALS – A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45:125–136.10.1016/j.compenvurbsys.2013.11.002
  28. Pierzchała, M., Talbot, B., Astrup, R., 2016: Measuring wheel ruts with close-range photogrammetry. Forestry: An International Journal of Forest Research, 89:383–391.10.1093/forestry/cpw009
  29. Reutebuch, E. S., McGaughey, J. R., Andersen,H. E., Carson,W. W., 2003: Accuracy of a high-resolution lidar terrain model under a conifer forest canopy, Canadian Journal of Remote Sensing, 29:527–535.10.5589/m03-022
  30. Rieke-Zapp, D. H., Nearing, M. A., 2005: Digital close range photogrammetry for measurement of soil erosion. The Photogrammetric Record, 20:69–87.10.1111/j.1477-9730.2005.00305.x
  31. Robinson, T. P., Metternicht, G., 2006: Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture, 50:97–108.10.1016/j.compag.2005.07.003
  32. Sačkov, I., Kardoš, M., 2014: Forest delineation based on LiDAR data and vertical accuracy of the terrain model in forest and non-forest area. Annals of Forest Research, 57:119–136.10.15287/afr.2014.169
  33. Schäffer, J., Buberl, H., Von Wilpert, K., 2012: Deformation damages in forest topsoils-An assessment based on Level-I soil monitoring data from Baden-Württemberg (SW Germany). Journal of Plant Nutrition and Soil Science, 175:24–33.10.1002/jpln.201000403
  34. Tomaštík, J., Mokroš, M., Surový, P., Grznárová, A., Merganič, J., 2019: UAV RTK/PPK Method-An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sensing, 11:721.10.3390/rs11060721
  35. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., Reynolds, J. M., 2012: ’Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179:300–314.10.1016/j.geomorph.2012.08.021
DOI: https://doi.org/10.2478/forj-2019-0021 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 198 - 205
Published on: Nov 20, 2019
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Juraj Čerňava, František Chudý, Daniel Tunák, Šimon Saloň, Zuzana Vyhnáliková, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.