Have a personal or library account? Click to login
Suitability of MODIS-based NDVI index for forest monitoring and its seasonal applications in Central Europe Cover

Suitability of MODIS-based NDVI index for forest monitoring and its seasonal applications in Central Europe

Open Access
|Nov 2019

References

  1. Barka, I., Lukeš, P., Bucha, T., Hlásny, T., Strejček, R., Mlčoušek, M., Křístek, Š., 2018: Remote sensing-based forest health monitoring systems – case studies from Czechia and Slovakia. Central European Forestry Journal, 64:259–275.
  2. Bartold, M., 2012: Monitoring of forest damages in Poland and Slovakia based on Terra.MODIS satellite images. Geoinformation Issues, 4:23–31.
  3. Beck, P. S. A., Atzberger, T. C., Høgda, K. A., Johansen, B., Skidmore, A. K., 2006: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of Environment, 100:321–334.10.1016/j.rse.2005.10.021
  4. Berner, L. T., Beck, P. S. A., Bunn, A. G., Goetz, S. J., 2013: Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biology, 19:3449–3462.10.1111/gcb.1230423813896
  5. Bhuyan, U., Zang, C., Vicente-Serrano, S. M., Menzel, A., 2017: Exploring Relationships among Tree-Ring Growth, Climate Variability, and Seasonal Leaf Activity on Varying Timescales and Spatial Resolutions. Remote Sensing, 9:526.10.3390/rs9060526
  6. Bruce, L. M., Mathur, A., Byrd, J. D., Jr., 2006: Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures. GIS science & Remote Sensing, 43:67–77.10.2747/1548-1603.43.1.67
  7. Bucha, T., Koreň, M., 2014: Tvorba údajovej bázy a modelovanie fenológie lesných porastov. In: Bucha, T. (ed.): Satelity v službách lesa. Bratislava, SAP-Slovak Academic Press, 202 p.
  8. Bucha, T., Koreň, M., 2017: Phenology of the beech forests in the Western Carpathians from MODIS for 2000–2015. iForest-Biogeosciences and Forestry, 10:537–546.10.3832/ifor2062-010
  9. Bunn, A. G., Hughes, M. K., Kirdyanov, A. V., Losleben, M., Shishov, V. V., Berner, L. T. et al., 2013: Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environmental Research Letters, 8:1–8.10.1088/1748-9326/8/3/035034
  10. Camarero, J. J., Franquesa, M., Sangüesa-Barreda, G., 2015: Timing of drought triggers distinct growth responses in holm oak: implications to predict warming-induced forest defoliation and growth decline. Forests, 6:1576–1597.10.3390/f6051576
  11. Cook, E. R., 1985: A Time Series Analysis Approach to Tree-Ring Standardization. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 5 August 1985.
  12. Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., François, C., 2009: Modelling inter-annual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149:938–948.10.1016/j.agrformet.2008.11.014
  13. Dobbertin, M., 2005: Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research, 24:319–333.10.1007/s10342-005-0085-3
  14. Eklundh, L., Jönsson, P., 2015: TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics. In: Kuenzer, C. et al. (eds.): Remote Sensing Time Series 22. Springer International Publishing, Switzerland, p. 141–158.10.1007/978-3-319-15967-6_7
  15. Fisher, J. I., Mustard, J. F., 2007: Cross-scalar satellite phenology from ground, Landsat and MODIS data. Remote Sensing of Environment, 109:261–273.10.1016/j.rse.2007.01.004
  16. Franch, B., Vermote, E. F., Sobrino, J. A., Fédèle, E., 2013: Analysis of directional effect on atmospheric correction. Remote Sensing of Environment, 128:276–288.10.1016/j.rse.2012.10.018
  17. Fritts, H. C., Blasing, T. J., Hayden, B. P., Kutzbach, J. E., 1971: Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. Journal of Applied Meteorology, 10:845–864.10.1175/1520-0450(1971)010<;0845:MTFSTG>2.0.CO;2
  18. Fritts, H. C., 1976: Tree Rings and Climate. New York, NY, USA, Academic Press, 582 p.
  19. Fu, Y. H., Piao, S., Op de Beeck, M. O., Cong, N., Zhao, H., Zhang, Y. et al., 2014: Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 11:1255–1263.10.1111/geb.12210
  20. Ganguly, S., Friedl, M. A., Tan, B., Zhang, X., Verma, M., 2010: Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sensing of Environment, 114:1805–1816.10.1016/j.rse.2010.04.005
  21. Garonna, I., De Jong, R., De Wit, A. J. W., Mücher, C. A., Schmid, B., Schaepman, M. E., 2014. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Global Change Biology, 11:3457–3470.10.1111/gcb.12625
  22. Hamunyela, E., Verbesselt, J., Roerink, G., Herold, M., 2013: Trends in Spring Phenology of Western European Deciduous Forests. Remote Sensing, 5:6159–6179.10.3390/rs5126159
  23. Heumann, B. W., Seaquist, J. W., Eklundh, L., Jönsson, P., 2007: AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sensing of Environment, 108:385–392.10.1016/j.rse.2006.11.025
  24. Hirka, A., 2018: A 2017. évi biotikus és abiotikus erdőgazdasági károk, valamint a 2018-ban várható károsítások. Avaiable at: <http://www.erti.hu/hu/publikációs-hírek/731-prognózis-füzet-2018f>
  25. Hlásny, T., Barka, I., Sitková, Z., Bucha, T., Konôpka, M., Lukáč, M., 2015: MODIS-based vegetation index has sufficient sensitivity to indicate stand-level intra-seasonal climatic stress in oak and beech forests. Annals of Forest Science, 1:109–125.10.1007/s13595-014-0404-2
  26. Hmimina, G., Dufrêne, E., Pontailler, J. Y., Delpierre, N., Aubinet, M., Caquet, B. et al., 2013: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sensing of Environment, 132:145–158.10.1016/j.rse.2013.01.010
  27. Holmes, R. L., 1983: Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43:69–78.
  28. Jin, H., Jönsson, A. M., Olsson, C. et al., 2019: New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. International Journal of Biometeorology, 6:763–775.10.1007/s00484-019-01690-5
  29. Ju, J., Roy, D. P., Shuai, Y., Schaaf, C., 2011: Development of an approach for generation of temporally complete daily nadir MODIS reflectance time series. Remote Sensing of Environment, 114:1–20.10.1016/j.rse.2009.05.022
  30. Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, N. et al., 2002: An overview of MODIS land data processing and product status. Remote Sensing of Environment, 83:3–15.10.1016/S0034-4257(02)00084-6
  31. Kaufmann, R. K., D’Arrigo, R. D., Paletta, L. F., Tian, H. Q., Jolly, W. M., Myneni, R. B., 2008: Identifying climatic controls on ring width: The timing of correlations between tree rings and NDVI. Earth Interactions, 12:1–14.10.1175/2008EI263.1
  32. Koltay, A., 2006: Az erdők egészségi állapotának változásai az erdővédelmi monitoring rendszerek adatai alapján. Tájökológiai lapok, 2:327–337.10.56617/tl.4470
  33. Kovats, R. S., Valentinim, R., Bouwer, L. M., Georgopoulou, E., Jacob, D., Martin, E. et al., 2014: Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1267–1326.
  34. Kristof, D., Pataki, R., 2009: Novel vector-based preprocessing of MODIS data. In: Maktav, D. (ed.): Remote Sensing for a Changing Europe. IOS Press, Amsterdam, 649 p.
  35. Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E. et al., 2014: Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146:69–83.10.1016/j.jenvman.2014.07.03025156267
  36. Lopatin, E., Kolström, T., Spiecker, H., 2006: Determination of forest growth trends in Komi Republic (northwestern Russia): Combination of tree-ring analysis and remote sensing data. Boreal Environment Research, 11:341–353.
  37. Móricz, N., Garamszegi, B., Rasztovits, E., Bidló, A., Horváth, A., Jagicza, A. et al., 2018: Recent Drought-Induced Vitality Decline of Black Pine (Pinus nigra Arn.) in South-West Hungary–Is This Drought-Resistant Species under Threat by Climate Change? Forests, 9:414.10.3390/f9070414
  38. Nébih, 2018: Országos Erdőkár Nyilvántartási Rend-szer (OENYR) útmutató. Avaiable at: <http://portal.nebih.gov.hu/documents/10182/1047730/Erdővédelmi+kárbejelentő_Útmutató_új_20180604.pdf/96c53f3a-89ca-967f-f40a-98b059115fad>
  39. Pavlendová, H., Snopková, Z., 2014: Validácia nástupu fenologických udalostí bukových porastov. In: Bucha, T. (ed): Satelity v službách lesa. Bratislava, SAP-Slovak Academic Press, 202 p.
  40. Peters, A. J., Walter-Shea, E. A., Andrés Viña, L. J., Hayes, M., Svoboda, M. D., 2002: Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric Engineering and Remote Sensing, 1:72–75.
  41. Schieber, B., Janík, R., Snopková, Z., 2013: Phenology of common beech (Fagus sylvatica L.) along the altitudinal gradient in the Slovak Republic (Inner Western Carpathians). Journal of Forest Science, 4:176–184.10.17221/82/2012-JFS
  42. Somogyi, Z., 2016. Projected effects of climate change on the carbon stocks of european beech (Fagus sylvatica l.) forests in Zala County, Hungary. Lesnícky časopis - Forestry Journal, 62:3–14.10.1515/forj-2016-0001
  43. Somogyi, Z., Koltay, A., Molnár, T., Móricz, N., 2018: Forest health monitoring system in Hungary based on MODIS products. In: Molnár, V. É. (ed.): Theory Meets Practice in GIS; Proceedings of the 9. TérinformatikaiKonferenciaésSzakkiállítás, Debrecen, Hungary, 24–25 May 2018; Debrecen University Press, Debrecen, Hungary, 2018:325–330.
  44. Soudami, K., Maire, G. M., Dufrene, E., Francois, Ch., Delpierre, N., Ulrich, E., Cecchini, S., 2008: An evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sensing of Environment, 5:2643–2655.10.1016/j.rse.2007.12.004
  45. Townshend, J. R. G., Huang, S. N., Kalluri, V., Defries, R. S., Liang, S., 2000: Beware of the per-pixel characterization of land cover. International Journal of Remote Sensing, 4:839–843.10.1080/014311600210641
  46. Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23:1696–1718.10.1175/2009JCLI2909.1
  47. Vicente-Serrano, S. M., Camarero, J. J., Olano, J. M., Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera, M. et al., 2016: Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment, 187:14–29.10.1016/j.rse.2016.10.001
  48. Wigley, T. M. L., Briffa, K. R., Jones, P. D., 1984: On the average value of correlated time-series, with applications on Dendroclimatology and Hydrometeorology. Journal of Climate and Applied Meteorology, 23:201–213.10.1175/1520-0450(1984)023<;0201:OTAVOC>2.0.CO;2
  49. Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., Woodcock, C. E., 2012: Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122:2–10.10.1016/j.rse.2012.01.010
DOI: https://doi.org/10.2478/forj-2019-0020 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 206 - 217
Published on: Nov 20, 2019
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ivan Barka, Tomáš Bucha, Tamás Molnár, Norbert Móricz, Zoltán Somogyi, Milan Koreň, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.