Have a personal or library account? Click to login
Mediating function of heart failure in the causal relationship between diastolic blood pressure and hypertensive renal disease with renal failure: a mediated Mendelian randomization study† Cover

Mediating function of heart failure in the causal relationship between diastolic blood pressure and hypertensive renal disease with renal failure: a mediated Mendelian randomization study†

Open Access
|Sep 2024

References

  1. Rossi GP, Bisogni V, Rossitto G, et al. Practice recommendations for diagnosis and treatment of the most common forms of secondary hypertension. High Blood Press Cardiovasc Prev. 2020;27:547–560.
  2. Edmonston DL, Sparks MA. Therapeutic options for chronic kidney disease-associated pulmonary hypertension. Curr Opin Nephrol Hypertens. 2020;29:497–507.
  3. Bai K, Chen R, Lu F, et al. Blood pressure is associated with rapid kidney function decline in a very elderly hypertensive Chinese population. Clin Interv Aging. 2020;15:1317–1323.
  4. Georgianos PI, Agarwal R. Resistant hypertension in chronic kidney disease (CKD): prevalence, treatment particularities, and research agenda. Curr Hypertens Rep. 2020;22:84.
  5. Hung MH, Huang CC, Chung CM, Chen JW. 24-h ambulatory blood pressure variability and hypertensive nephropathy in Han Chinese hypertensive patients. J Clin Hypertens (Greenwich). 2021;23:281–288.
  6. Mentz RJ, Xu H, O’Brien EC, et al. PROVIDE-HF primary results: patient-reported outcomes investigation following initiation of drug therapy with entresto (sacubitril/valsartan) in heart failure. Am Heart J. 2020;230:35–43.
  7. Exner S, Schuldt C, Sachindra S, et al. AGTR1 is overexpressed in neuroendocrine neoplasms, regulates secretion and may potentially serve as a target for molecular imaging and therapy. Cancers (Basel). 2020;12:3138.
  8. Ji LD, Li JY, Yao BB, Cai XB, Shen QJ, Xu J. Are genetic polymorphisms in the renin-angiotensinaldosterone system associated with essential hypertension? Evidence from genome-wide association studies. J Hum Hypertens. 2017;31: 695–698.
  9. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. 1986. Int J Epidemiol. 2004;33:9.
  10. Burgess S, Daniel RM, Butterworth AS, Thompson SG; EPIC-InterAct Consortium. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol. 2015;44:484–495.
  11. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–1163.
  12. Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019;4:186.
  13. Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol. 2017;41:341–352.
  14. Richmond RC, Anderson EL, Dashti HS, et al. Investigating causal relations between sleep traits and risk of breast cancer in women: Mendelian randomisation study. BMJ. 2019;365:l2327.
  15. Wang J, Kwok MK, Au Yeung SL, et al. Sleep duration and risk of diabetes: observational and Mendelian randomization studies. Prev Med. 2019;119:24–30.
  16. Henry A, Katsoulis M, Masi S, et al. The relationship between sleep duration, cognition and dementia: a Mendelian randomization study. Int J Epidemiol. 2019;48:849–860.
  17. Anderson EL, Richmond RC, Jones SE, et al. Is disrupted sleep a risk factor for Alzheimer’s disease? Evidence from a two-sample Mendelian randomization analysis. Int J Epidemiol. 2021;50: 817–828.
  18. Brand JS, Gaillard R, West J, et al. Associations of maternal quitting, reducing, and continuing smoking during pregnancy with longitudinal fetal growth: findings from Mendelian randomization and parental negative control studies. PLoS Med. 2019;16:e1002972.
  19. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40:597–608.
  20. Magnus MC, Miliku K, Bauer A, et al. Vitamin D and risk of pregnancy related hypertensive disorders: mendelian randomisation study. BMJ. 2018;361:k2167.
  21. Sun YQ, Burgess S, Staley JR, et al. Body mass index and all cause mortality in HUNT and UK Biobank studies: linear and non-linear Mendelian randomisation analyses. BMJ. 2019;364:l1042.
  22. Palmer TM, Sterne JA, Harbord RM, et al. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol. 2011;173: 1392–1403.
  23. Lawson DJ, Davies NM, Haworth S, et al. Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity. Hum Genet. 2020;139:23–41.
  24. Zhang ZY, Wang LJ. Methods for evaluating mediation effects: rationale and comparison. New Trends in Psychometrics. 2008;1:595–604.
  25. Lawlor DA. Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016;45:908–915.
  26. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35:1880–1906.
  27. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–314.
  28. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–525.
  29. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27: R195–R208.
  30. Yang Q, Sanderson E, Tilling K, Borges MC, Lawlor DA. Exploring and mitigating potential bias when genetic instrumental variables are associated with multiple non-exposure traits in Mendelian randomization. Eur J Epidemiol. 2022;37: 683–700.
  31. Lawlor D, Richmond R, Warrington N, et al. Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: sources of bias and methods for assessing them. Wellcome Open Res. 2017;2:11.
  32. Coats AJ, Shewan LG. The management of heart failure with preserved ejection fraction. Card Fail Rev. 2015;1:11–15.
  33. Borlaug BA. Taking aim at pulmonary hypertension in heart failure with preserved ejection fraction. Eur Heart J. 2015;36:2574–2575.
  34. Guazzi M, Gomberg-Maitland M, Arena R. Pulmonary hypertension in heart failure with preserved ejection fraction. J Heart Lung Transplant. 2015;34:273–281.
  35. Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling inessential hypertension. J Am Coll Cardiol. 1992;19:1550–1558.
  36. Meera SJ, Ando T, Pu D, Manjappa S, Taub CC. Dynamic left ventricular changes in patients with gestational diabetes: a speckle tracking echocardiography study. J Clin Ultrasound. 2017;45: 20–27.
  37. Kozakova M, Morizzo C, Fraser AG, Palombo C. Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16:78.
  38. Murtaza G, Virk HUH, Khalid M, et al. Diabetic cardiomyopathy – a comprehensive updated review. Prog Cardiovasc Dis. 2019;62:315–326.
  39. Chen R, Wu X, Shen LJ, et al. Left ventricular myocardial function in hemodialysis and nondialysis uremia patients: a three-dimensional speckletracking echocardiography study. PLoS One. 2014;9:e100265.
  40. Kim HL, Kim MA, Oh S, et al. Sex difference in the association between metabolic syndrome and left ventricular diastolic dysfunction. Metab Syndr Relat Disord. 2016;14:507–512.
  41. Zoppini G, Bergamini C, Bonapace S, et al. Association between subclinical left ventricular systolic dysfunction and glycemic control in asymptomatic type 2 diabetic patients with preserved left ventricular function. J Diabetes Complications. 2017;31:1035–1040.
DOI: https://doi.org/10.2478/fon-2024-0031 | Journal eISSN: 2544-8994 | Journal ISSN: 2097-5368
Language: English
Page range: 285 - 294
Submitted on: Feb 3, 2024
Accepted on: Apr 18, 2024
Published on: Sep 16, 2024
Published by: Shanxi Medical Periodical Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Lei Pang, Zi-Jun Ding, Hong-Qiang Chai, Fei Li, Ming Wu, Wei-Bing Shuang, published by Shanxi Medical Periodical Press
This work is licensed under the Creative Commons Attribution 4.0 License.