References
- Rossi GP, Bisogni V, Rossitto G, et al. Practice recommendations for diagnosis and treatment of the most common forms of secondary hypertension. High Blood Press Cardiovasc Prev. 2020;27:547–560.
- Edmonston DL, Sparks MA. Therapeutic options for chronic kidney disease-associated pulmonary hypertension. Curr Opin Nephrol Hypertens. 2020;29:497–507.
- Bai K, Chen R, Lu F, et al. Blood pressure is associated with rapid kidney function decline in a very elderly hypertensive Chinese population. Clin Interv Aging. 2020;15:1317–1323.
- Georgianos PI, Agarwal R. Resistant hypertension in chronic kidney disease (CKD): prevalence, treatment particularities, and research agenda. Curr Hypertens Rep. 2020;22:84.
- Hung MH, Huang CC, Chung CM, Chen JW. 24-h ambulatory blood pressure variability and hypertensive nephropathy in Han Chinese hypertensive patients. J Clin Hypertens (Greenwich). 2021;23:281–288.
- Mentz RJ, Xu H, O’Brien EC, et al. PROVIDE-HF primary results: patient-reported outcomes investigation following initiation of drug therapy with entresto (sacubitril/valsartan) in heart failure. Am Heart J. 2020;230:35–43.
- Exner S, Schuldt C, Sachindra S, et al. AGTR1 is overexpressed in neuroendocrine neoplasms, regulates secretion and may potentially serve as a target for molecular imaging and therapy. Cancers (Basel). 2020;12:3138.
- Ji LD, Li JY, Yao BB, Cai XB, Shen QJ, Xu J. Are genetic polymorphisms in the renin-angiotensinaldosterone system associated with essential hypertension? Evidence from genome-wide association studies. J Hum Hypertens. 2017;31: 695–698.
- Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. 1986. Int J Epidemiol. 2004;33:9.
- Burgess S, Daniel RM, Butterworth AS, Thompson SG; EPIC-InterAct Consortium. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol. 2015;44:484–495.
- Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–1163.
- Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019;4:186.
- Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol. 2017;41:341–352.
- Richmond RC, Anderson EL, Dashti HS, et al. Investigating causal relations between sleep traits and risk of breast cancer in women: Mendelian randomisation study. BMJ. 2019;365:l2327.
- Wang J, Kwok MK, Au Yeung SL, et al. Sleep duration and risk of diabetes: observational and Mendelian randomization studies. Prev Med. 2019;119:24–30.
- Henry A, Katsoulis M, Masi S, et al. The relationship between sleep duration, cognition and dementia: a Mendelian randomization study. Int J Epidemiol. 2019;48:849–860.
- Anderson EL, Richmond RC, Jones SE, et al. Is disrupted sleep a risk factor for Alzheimer’s disease? Evidence from a two-sample Mendelian randomization analysis. Int J Epidemiol. 2021;50: 817–828.
- Brand JS, Gaillard R, West J, et al. Associations of maternal quitting, reducing, and continuing smoking during pregnancy with longitudinal fetal growth: findings from Mendelian randomization and parental negative control studies. PLoS Med. 2019;16:e1002972.
- Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40:597–608.
- Magnus MC, Miliku K, Bauer A, et al. Vitamin D and risk of pregnancy related hypertensive disorders: mendelian randomisation study. BMJ. 2018;361:k2167.
- Sun YQ, Burgess S, Staley JR, et al. Body mass index and all cause mortality in HUNT and UK Biobank studies: linear and non-linear Mendelian randomisation analyses. BMJ. 2019;364:l1042.
- Palmer TM, Sterne JA, Harbord RM, et al. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol. 2011;173: 1392–1403.
- Lawson DJ, Davies NM, Haworth S, et al. Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity. Hum Genet. 2020;139:23–41.
- Zhang ZY, Wang LJ. Methods for evaluating mediation effects: rationale and comparison. New Trends in Psychometrics. 2008;1:595–604.
- Lawlor DA. Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016;45:908–915.
- Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35:1880–1906.
- Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–314.
- Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–525.
- Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27: R195–R208.
- Yang Q, Sanderson E, Tilling K, Borges MC, Lawlor DA. Exploring and mitigating potential bias when genetic instrumental variables are associated with multiple non-exposure traits in Mendelian randomization. Eur J Epidemiol. 2022;37: 683–700.
- Lawlor D, Richmond R, Warrington N, et al. Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: sources of bias and methods for assessing them. Wellcome Open Res. 2017;2:11.
- Coats AJ, Shewan LG. The management of heart failure with preserved ejection fraction. Card Fail Rev. 2015;1:11–15.
- Borlaug BA. Taking aim at pulmonary hypertension in heart failure with preserved ejection fraction. Eur Heart J. 2015;36:2574–2575.
- Guazzi M, Gomberg-Maitland M, Arena R. Pulmonary hypertension in heart failure with preserved ejection fraction. J Heart Lung Transplant. 2015;34:273–281.
- Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling inessential hypertension. J Am Coll Cardiol. 1992;19:1550–1558.
- Meera SJ, Ando T, Pu D, Manjappa S, Taub CC. Dynamic left ventricular changes in patients with gestational diabetes: a speckle tracking echocardiography study. J Clin Ultrasound. 2017;45: 20–27.
- Kozakova M, Morizzo C, Fraser AG, Palombo C. Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16:78.
- Murtaza G, Virk HUH, Khalid M, et al. Diabetic cardiomyopathy – a comprehensive updated review. Prog Cardiovasc Dis. 2019;62:315–326.
- Chen R, Wu X, Shen LJ, et al. Left ventricular myocardial function in hemodialysis and nondialysis uremia patients: a three-dimensional speckletracking echocardiography study. PLoS One. 2014;9:e100265.
- Kim HL, Kim MA, Oh S, et al. Sex difference in the association between metabolic syndrome and left ventricular diastolic dysfunction. Metab Syndr Relat Disord. 2016;14:507–512.
- Zoppini G, Bergamini C, Bonapace S, et al. Association between subclinical left ventricular systolic dysfunction and glycemic control in asymptomatic type 2 diabetic patients with preserved left ventricular function. J Diabetes Complications. 2017;31:1035–1040.