Have a personal or library account? Click to login
Exploring Asymmetric GARCH Models for Predicting Indian Base Metal Price Volatility Cover

Exploring Asymmetric GARCH Models for Predicting Indian Base Metal Price Volatility

Open Access
|May 2024

References

  1. AbdElaal, M.A. (2011). Modeling and forecasting time varying stock return volatility in the Egyptian stock market. International Research Journal of Finance and Economics, 78.
  2. Aggarwal, R. (1988). Stock index futures and cash market volatility. Review of Futures Markets, 7(2), 290–299.
  3. Akgül, I., Sayyan, H. (2005). İMKB-30 Hisse Senedi Getirilerinde Volatilitenin Asimetrik Koşullu Değişen Varyans Modelleri ile Öngörüsü. TC Marmara Üniversitesi Bankacılık ve Sigortacılık Yüksekokulu 2005 Geleneksel Finans Sempozyumu Tebliğleri.
  4. Al Freedi, A., Shamiri, A., Isa, Z. (2012). A study on the behavior of volatility in Saudi Arabia stock market using symmetric and asymmetric GARCH models. Journal of Mathematics & Statistics, 8(1).
  5. Ali, I. (2016). Stock Market Volatility and Returns: A Study of NSE & BSE in India. International Journal of Humanities & Social Science Studies, 202–211.
  6. Angabini, A., Wasiuzzaman, S. (2011). GARCH models and the financial crisis-A study of the Malaysian. The International Journal of Applied Economics and Finance, 5(3), 226–236. DOI: 10.3923/ijaef.2011.226.236.
  7. Asteriou, D., Hall, S.G. (2011). ARIMA models and the Box–Jenkins methodology. Applied Econometrics, 2(2), 265–286.
  8. Awartani, B.M., Corradi, V. (2005). Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries. International Journal of forecasting, 21(1), 167–183.
  9. Banumathy, K., Azhagaiah, R. (2015). Modelling Stock Market Volatility: Evidence from India. Managing Global Transitions: International Research Journal, 13(2).
  10. Bekaert, G., Harvey, C.R. (1997). Emerging Equity Market Volatility. Journal of Financial Economics, 43, 29–78.
  11. Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business & Economic Statistics Section, 1976.
  12. Bollerslev, T. (1986). Generalised Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307–327.
  13. Brooks, C., Burke, S.P., Persand, G. (2003). Multivariate GARCH models: software choice and estimation issues. Journal of Applied Econometrics, 18(6), 725–734.
  14. Dickey, D.A., Fuller, W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427–431.
  15. Ding, Z., Granger, C.W.J., Angle, R.F. (1993). A long memory property of stocks market returns and a new Model. Journal of Empirical Finance, 1(1), 83–106. DOI: 10.1016/0927-5398 (93)90006-D.
  16. Emenike, K.O. (2010). Modelling stock returns volatility in Nigeria using GARCH models.
  17. Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. DOI: 10.2307/1912773.
  18. Engle, R., Granger, C. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251–276. DOI: 10.2307/1913236.
  19. Ezzat, H. (2012). The application of GARCH and EGARCH in modeling the volatility of daily stock returns during massive shocks: The empirical case of Egypt.
  20. Fama, E. F. (1965). The behavior of stock market prices. Journal of Business, 38, 34–105. DOI: 10.1086/29474.
  21. Floros, C. (2008). Modelling Volatility Using GARCH Models: Evidence from Egypt and Israel. Middle Eastern Finance and Economics, 2, 31–41.
  22. Frimpong, J.M., Oteng-Abayie, E.F. (2006). Modelling and forecasting volatility of returns on the Ghana stock exchange using GARCH models.
  23. Glosten, L.R., Jagannathan, R., Runkle, D.E. (1993). On the relation between expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48(5), 1779–1801. DOI: 10.1111/j.1540-6261.1993.tb05128.x.
  24. Gokan, S. (2000). Forecasting volatility of emerging stock markets: Linear versus non-linear GARCH models. Journal of Forecasting, 19, 499–504. DOI: 10.1002/1099-131x (200011)19:6<499:aid-for745>3.0.co;2-p.
  25. Gökbulut, R., Pekkaya, M. (2014). Estimating and Forecasting Volatility of Financial Markets Using Asymmetric GARCH Models: An Application on Turkish Financial Markets. International Journal of Economics and Finance, 6(4), 23–33. DOI: 10.5539/ijef.v6n4p23.
  26. Harris, R., Sollis, R. (2003). Applied time series modelling and forecasting. Wiley.
  27. Hsieh, D.A. (1989). Modeling Heteroscedasticity in daily foreign-exchange rates. Journal of Business & Economic Statistics, 7, 307–317. DOI: 10.2307/1391528.
  28. Joshi, P. (2014). Forecasting volatility of Bombay stock exchange. International journal of current research and academic review, 2(7), 222–230.
  29. Kumar, A., Mishra, U.S. (2019a). Testing the Volatility and Model Designing for International Tourist Footfalls in India: Applying GARCH Family Models. Journal of Advanced Research in Dynamical and Control Systems, 11(SP-10), 212–220. DOI: 10.5373/JARDCS/V11SP10/20192793.
  30. Kumar, A., Mishra, U.S. (2019b). Volatility clustering and price dependency of turmeric amongst the state of India. Journal of Advanced Research in Dynamical and Control Systems, 11(SP-10), 228–235. DOI: 10.5373/JARDCS/V11SP10/20192795.
  31. Kumar, A., Biswal, S.K. (2019). Impulsive Clustering and Leverage Effect of Emerging Stock Market with Special Reference to Brazil, India, Indonesia, and Pakistan. Journal of Advanced Research in Dynamical and Control Systems, 11(11), 33–37. DOI: 10.5373/jardcs/v11sp11/20192925.
  32. Kumar, A. (2018a). Prospects of GST on Indian economy-An econometric approach. International Journal of Management, IT and Engineering, 8(7), 147–164.
  33. Kumar, A. (2018b). A Study on Risk Hedging Strategy: Efficacy of Option Greeks. Abhinav National Monthly Refereed Journal of Research in Commerce & Management, 7(4), 77–85.
  34. Kumar, A. (2019). Relationship and Co-Integration of Nifty 50 Future Index with Advanced Country Future Index. Journal of Advanced Research in Dynamical and Control Systems, 11(SP-10), 197–203. DOI: 10.5373/JARDCS/V11SP10/20192791.
  35. Kumar, A., Biswal, S.K., Swain, P.K. (2019a). A dynamic association between stock markets, Forex, gold and oil prices in Indian context. Revista ESPACIOS, 40(06).
  36. Kumar, A., Biswal, S.K., Swain, P.K. (2019b). Volatility Clustering and Model Development for NSE Index Future and Spot Index through ARCH/GARCH Models. Journal of Advanced Research in Dynamical and Control Systems, 11(10), 221–227. DOI: 10.5373/jardcs/v11sp10/20192794.
  37. Mahadevan, M.S. (2014). A Study on Volatility Modelling of BSE Sensex. International Journal of Banking, Risk and Insurance, 2(1), 32.
  38. Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394–414. DOI: 10.1086/294632.
  39. Miron, D., Tudor, C. (2010). Asymmetric conditional volatility models: Empirical estimation and comparison of forecasting accuracy. Romanian Journal of Economic Forecasting, 13(3), 74–92.
  40. Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347–370.
  41. Pagan, A. (1996). The econometrics of financial markets. Journal of Empirical Finance, 3(1), 15–102.
  42. Peter, C.B., Phillips, Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75(2), 335–346. DOI: 10.2307/2336182.
  43. Rashid, A., Ahmad, S. (2008). Predicting stock returns volatility: An evaluation of linear vs. nonlinear methods. International Research Journal of Finance and Economics, 20(31), 141–150.
  44. Sahoo, J., Herlina, Khurshid, M., Mishra, D., Kumar, A., Sahoo, J. (2024). Fuelling the future: A comparative exploration of energy prices in India and the US. Journal of Statistics and Management System, 27(1), 187–200. DOI: 10.47974/JSMS-1212.
  45. Su, C. (2010). Application of EGARCH model to estimate the financial volatility of daily returns: The empirical case of China. The University of Gothenburg, Master Degree Project No. 2010:142.
  46. Taylor, S. (1994). Modelling Stochastic Volatility: A Review and Comparative Study. Mathematical Finance, 4, 183–204. DOI: 10.1111/j.1467-9965.1994.tb00057.x.
  47. Tripathy, T., Gil-Alana, L.A. (2017). Macroeconomic Regimes and Foreign Exchange Rate Volatility in India. IUP Journal of Applied Economics, 16(3), 25–46.
  48. Zokoian, J.M. (1994). Threshold Heteroscedasticity Models. Journal of Economic Dynamics and Control, 18(5), 931–955. DOI: 10.1016/0165-1889 (94) pp. 90039-6.
DOI: https://doi.org/10.2478/foli-2024-0007 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 105 - 123
Submitted on: Aug 19, 2023
Accepted on: Feb 25, 2024
Published on: May 31, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Arya Kumar, Jyotirmayee Sahoo, Jyotsnarani Sahoo, Subhashree Nanda, Devi Debyani, published by Sciendo
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.