Have a personal or library account? Click to login
The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an Ann Model Approach: An Empirical Investigation Based on BSE Sensex Cover

The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an Ann Model Approach: An Empirical Investigation Based on BSE Sensex

Open Access
|Dec 2023

References

  1. Al-Najjar, D. (2022). The Co-movement between international and emerging stock markets using ANN and stepwise models: Evidence from selected indices. Complexity, 2022, 1–14. DOI: 10.1155/2022/7103553.
  2. Ajoku, K.K., Nwokonkwo, O.C., John-Otumu, A.M., Oleji, C.P. (2021). A model for stock market value forecasting using ensemble artificial neural network. Journal of Advances in Computing, Communications and Information Technology, 2, 1–13. DOI: 10.37121/jaccit.v2.162.
  3. Akter, S., Rana, M.S., Anik, T.H. (2020). The dynamic relationship between stock market returns and macroeconomic variables: an empirical study from Bangladesh. Journal of Management, Economics, and Industrial Organization, 4(1), 40–62. DOI: 10.31039/jomeino.2020.4.1.3.
  4. Alonso, M.N., Batres-Estrada, G., Moulin, A. (2018). Deep learning in finance: prediction of stock returns with long short-term memory networks. Big Data and Machine Learning in Quantitative Investment, 1, 251–277.
  5. Anand, C. (2021). Comparison of stock price prediction models using pre-trained neural networks. March 2021, 3(2), 122–134. DOI: 10.36548/jucct.2021.2.005.
  6. Areli Bermudez Delgado, N., Bermudez Delgado, E., Saucedo, E. (2018). The relationship between oil prices, the stock market and the exchange rate: evidence from Mexico. The North American Journal of Economics and Finance, 45, 266–275. DOI: 10.1016/j. najef.2018.03.006.
  7. Baranidharan, S., Dhivya, N. (2020). Causal influence of macroeconomics factors shock on Indian stock market: evidence from BSE index. Asian Journal of Economics, Finance and Management, 2(2), 39–48.
  8. Basher, S., Haug, A.A., Sadorsky, P. (2011). Oil prices, exchange rates and emerging stock markets. SSRN Electronic Journal, 34(1), 227–240. DOI: 10.2139/ssrn.1852828.
  9. Burden, F., Winkler, D. (2008). Bayesian Regularization of neural networks. Methods in Molecular Biology, 458, 23–42. DOI: 0.1007/978-1-60327-101-1_3.
  10. Chandrika, P.V., Srinivasan, K.S. (2021). Predicting stock market movements using artificial neural networks. Universal Journal of Accounting and Finance, 9(3), 405–410. DOI: 10.13189/ujaf.2021.090315.
  11. Chen, A., Daouk, H., Leung, M.T. (2001). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan stock index. SSRN Electronic Journal, 30(6), 901–923. DOI: 10.2139/ssrn.237038.
  12. Fuchs, F., Wahl, M., Zagst, R., Zheng, X. (2022). Stock market crisis forecasting using neural networks with input factor selection. Applied Sciences, 12(4), 1952. DOI: 10.3390/app12041952.
  13. Gao, P., Zhang, R., Yang, X. (2020). The application of stock index price prediction with neural network. Mathematical and Computational Applications, 25(3), 53. DOI: 10.3390/mca25030053.
  14. Ghosh, S., Kanjilal, K. (2016). Co-movement of international crude oil price and Indian stock market: Evidences from nonlinear cointegration tests. Energy Economics, 53, 111–117. DOI: 10.1016/j.eneco.2014.11.002.
  15. Giri, A.K., Joshi, P. (2017). The impact of macroeconomic indicators on Indian stock prices: an empirical analysis. Studies in Business and Economics, 12(1), 61–78. DOI: 10.1515/sbe-2017-0005.
  16. Kamalov, F. (2020). Forecasting significant stock price changes using neural networks. Neural Computing and Applications, 32(23), 17655–17667. DOI: 10.1007/s00521-020-04942-3.
  17. MacKay, D.J. (1992). A practical Bayesian framework for Backpropagation networks. Neural Computation, 4(3), 448–472. DOI: 10.1162/neco.1992.4.3.448.
  18. Mensi, W., Hammoudeh, S., Yoon, S., Balcilar, M. (2016). Impact of macroeconomic factors and country risk ratings on GCC stock markets: evidence from a dynamic panel threshold model with regime switching. Applied Economics, 49(13), 1255–1272. DOI: 10.1080/00036846.2016.1217305.
  19. Mohammed, H.Y., Abu Rumman, A.A. (2018). The impact of macroeconomic indicators on qatar stock exchange: a comparative study between Qatar exchange index and AL Rayyan Islamic index†. Journal of Transnational Management, 23(4), 154–177. DOI: 15475778.2018.1512342.
  20. Møller, M.F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4), 525–533. DOI: 10.1080/00036846.2016.1217305.
  21. Nova, A.J., Mim, Z.Q., Rowshan, S., Islam, M.R., Nurullah, M., Biswas, M. (2021). Stock market prediction on high-frequency data using ANN. Asian Journal of Research in Computer Science, 10(3), 1–12. DOI: 10.9734/ajrcos/2021/v10i230241.
  22. Selvamuthu, D., Kumar, V., Mishra, A. (2019). Indian stock market prediction using artificial neural networks on tick data. Financial Innovation, 5(1). DOI: 10.1186/s40854-019-0131-7.
  23. Sharma, D.K., Hota, H.S., Brown, K., Handa, R. (2021). Integration of genetic algorithm with artificial neural network for stock market forecasting. International Journal of System Assurance Engineering and Management, 13(S2), 828–841. DOI: 10.1007/s13198-021-01209-5.
  24. Shahani, R., Bansal, A. (2020). Gold vs. India VIX: A comparative assessment of their capacity to act as a hedge and/or safe haven against stocks, crude and rupee-dollar rate. SSRN Electronic Journal, 41(2), 75–105. DOI: 10.2139/ssrn.3597889.
  25. Singh, N.P., Sharma, S. (2018a). Cointegration and causality among dollar, oil, gold and sensex across global financial crisis. Vision: The Journal of Business Perspective, 22(4), 365–376. DOI: 10.1177/0972262918804336.
  26. Singh, N.P., Sharma, S. (2018b). Phase-wise analysis of dynamic relationship among gold, crude oil, US dollar and stock market. Journal of Advances in Management Research, 15(4), 480–499. DOI: 10.1108/jamr-12-2017-0124.
  27. Srivastava, A. (2010). Relevance of macroeconomic factors for the Indian stock market. Decision, 37(3), 69–89.
  28. Ticknor, J.L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501–5506. DOI: 10.1016/j. eswa.2013.04.013.
  29. Zhong, X., Enke, D. (2019). Predicting the Daily return direction of the stock market using hybrid machine learning algorithms. Financial Innovation, 5(1). DOI: 10.1186/s40854-019-0138-0.
DOI: https://doi.org/10.2478/foli-2023-0022 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 116 - 131
Submitted on: Mar 5, 2023
Accepted on: Sep 25, 2023
Published on: Dec 9, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Himanshu Goel, Monika Agarwal, Meghna Chhabra, Bhupender Kumar Som, published by Sciendo
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.