Have a personal or library account? Click to login
TVP-VAR Frequency Connectedness Between the Foreign Exchange Rates of Non-Euro Area Member Countries Cover

TVP-VAR Frequency Connectedness Between the Foreign Exchange Rates of Non-Euro Area Member Countries

By:
Open Access
|Dec 2023

References

  1. Anscombe, F.J., Glynn, W.J. (1983). Distribution of kurtosis statistic for normal statistics. Biometrika, 70(1), 227–234. DOI: 10.1093/biomet/70.1.227.
  2. Antonakakis, N., Chatziantoniou, I., Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. DOI: 10.3390/jrfm13040084.
  3. Antonakakis, N., Chatziantoniou, I., Gabauer, D. (2021). The impact of Euro through time: Exchange rate dynamics under different regimes. International Journal of Finance & Economics, 26(1), 1375–1408. DOI: 10.1002/ijfe.1854.
  4. Anwer, Z., Naeem, M.A., Hassan, M.K., Karim, S. (2022). Asymmetric connectedness across Asia-Pacific currencies: Evidence from time-frequency domain analysis. Finance Research Letters, 47, 102782. DOI: 10.1016/j.frl.2022.102782.
  5. Arı, Y. (2022). The comparison of range-based volatility estimators and an application of TVP-VAR-based connectedness. Journal of Life Economics, 9(3), 147–157, DOI: 10.15637/jlecon.9.3.03.
  6. Baillie, R.T., Bollerslev, T. (1990). A multivariate generalized ARCH approach to modeling risk premia in forward foreign exchange rate markets. Journal of International Money and Finance, 9(3), 309–324. DOI: 10.1016/0261-5606(90)90012-O.
  7. Baruník, J., Kočenda, E., Vácha, L. (2017). Asymmetric volatility connectedness on the forex market. Journal of International Money and Finance, 77, 39–56. DOI: 10.1016/j.jimonfin.2017.06.003.
  8. Baruník, J., Kˇrehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. J. Financ. Econom., 16(2), 271–296. DOI: 10.1093/jjfinec/nby001.
  9. Bouri, E., Lucey, B., Saeed, T., Vo, X.V. (2020). Extreme spillovers across Asian-Pacific currencies: A quantile-based analysis. International Review of Financial Analysis, 72, 101605. DOI: 10.1016/j.irfa.2020.101605.
  10. Cairns, J., Ho, C., McCauley, R.N. (2007). Exchange rates and global volatility: implications for Asia-Pacific currencies. BIS Quarterly Review, March.
  11. Chatziantoniou, I., Gabauer, D., Gupta, R. (2021). Integration and risk transmission in the market for crude oil: a time-varying parameter frequency connectedness approach. In: of Pretoria. Working Paper, 202147. Department of Economics, University (pp. 1–33). Retrieved from https://www.up.ac.za/media/shared/61/WP/wp_2021_47.zp209709.pdf.
  12. D’Agostino, R.B. (1970). Transformation to Normality of the Null Distribution of G1. Biometrika, 57(3), 679–681. DOI: 10.2307/2334794.
  13. Diebold, F.X., Yılmaz, K. (2009). Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets. Economic Journal, 119, 158–171.
  14. Diebold, F.X., Yılmaz, K. (2012). Better to Give than to Receive: Predictive Measurement of Volatility Spillovers. International Journal of Forecasting, 28, 57–66.
  15. Diebold, F.X., Yılmaz, K. (2014). On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms. Journal of Econometrics, 182, 119–134. DOI: 10.1016/j.jeconom.2014.04.012.
  16. Diebold, F.X., Yılmaz, K. (2015). Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring. Oxford University Press.
  17. Elliott, G., Rothenberg, T.J., Stock, J.H. (1996). Efficient Tests for an Autoregressive Unit Root. Econometrica, 64(4), 813–836.
  18. Fisher, T.J., Gallagher, C.M. (2012) New Weighted Portmanteau Statistics for Time Series
  19. Goodness of Fit Testing. Journal of the American Statistical Association, 107(498), 777–787. DOI: 10.1080/01621459.2012.688465.
  20. Gabauer, D. (2021). Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system. Journal of Multinational Financial Management, 60, 100680. DOI: 10.1016/j.mulfin.2021.100680.
  21. Gabauer, D. (2022). Package ‘Connectedness Approach’. R package version 1.0.0. Retrieved from https://CRAN.R-project.org/package=ConnectednessApproach.
  22. Garman, M.B., Klass, M.J. (1980). On the estimation of security price volatilities from historical data. Journal of Business, 67–78. Retrieved from https://www.jstor.org/stable/2352358.
  23. Greenwood-Nimmo, M., Nguyen, V.H., Rafferty, B. (2016). Risk and return spillovers among the G10 currencies. Journal of Financial Markets, 31, 43–62. DOI: 10.1016/j.finmar.2016.05.001.
  24. Hong, Y. (2001). A test for volatility spillover with application to exchange rates. Journal of Econometrics, 103(1–2). DOI: 10.1016/S0304-4076(01)00043-4.
  25. Huang, J., Chen, B., Xu, Y., Xia, X. (2023). Time-frequency volatility transmission among energy commodities and financial markets during the COVID-19 pandemic: A Novel TVP-VAR frequency connectedness approach. Finance Research Letters, 53, 103634. DOI: 10.1016/j.frl.2023.103634.
  26. Inagaki, K. (2007). Testing for volatility spillover between the British pound and the euro. Research in International Business and Finance, 21(2), 161–174. DOI: 10.1016/j.ribaf. 2006.03.006.
  27. Indruchová, E. (2013). European Union member states outside the euro area: their legal status and approach towards the euro. The Lawyer Quarterly, 3(3).
  28. Jarque, C.M., Bera, A.K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259. DOI: 10.1016/0165-1765(80)90024-5.
  29. Koop, G., Korobilis, D. (2013). Large time-varying parameter VARs. Journal of Econometrics, 177(2), 185–198.
  30. Koop, G., Korobilis, D. (2014). A new index of financial conditions. European Economic Review, 71, 101–116.
  31. Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of business, 61–65. Retrieved from https://www.jstor.org/stable/2352357.
  32. Rogers, L.C.G., Satchell, S.E. (1991). Estimating variance from high, low and closing prices. The Annals of Applied Probability, 504–512. Retrieved from https://www.jstor.org/stable/2959703.
  33. Ryan, A.J., Ulrıch, M.J. (2020). quantmod: Quantitative Financial Modelling Framework. R package version 0.4.18. Retrieved from https://CRAN.R-project.org/package=quantmod.
  34. Sosvilla-Rivero IV, S., Fernandez-Rodriguez, F., Bajo-Rubio, O. (1999). Exchange rate volatility in the EMS before and after the fall. Applied Economics Letters, 6(11), 717–722. DOI: 10.1080/135048599352286.
  35. Yang, D., Zhang, Q. (2000). Drift‐independent volatility estimation based on high, low, open, and close prices. The Journal of Business, 73(3), 477–492. DOI: 10.1086/209650.
  36. Wan, Y., He, S. (2021). Dynamic connectedness of currencies in G7 countries: A Bayesian time-varying approach. Finance Research Letters, 41, 101896. DOI: 10.1016/j.frl.2020.101896.
  37. Wen, T., Wang, G.J. (2020). Volatility connectedness in global foreign exchange markets. Journal of Multinational Financial Management, 54, 100617. DOI: 10.1016/j.mulfin.2020.100617.
DOI: https://doi.org/10.2478/foli-2023-0016 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 1 - 23
Submitted on: Jun 5, 2023
Accepted on: Aug 8, 2023
Published on: Dec 9, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Nesrin Akbulut, Yakup Ari, published by Sciendo
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.