Have a personal or library account? Click to login
Online Auctions End Time and its Impact on Sales Success – Analysis of the Odds Ratio on a Selected Central European Market Cover

Online Auctions End Time and its Impact on Sales Success – Analysis of the Odds Ratio on a Selected Central European Market

Open Access
|Dec 2022

References

  1. Allegro.pl (2022). Retrieved from https://www.allegro.pl.
  2. Backus, M., Blake, T., Masterov, D., Tadelis, S. (2015). Is sniping a problem for online auction markets? WWW 2015 – Proceedings of the 24th International Conference on World Wide Web (pp. 88–96). DOI: 10.1145/2736277.2741690.10.1145/2736277.2741690
  3. Balingit, R., Trevathan, J., Read, W. (2009). Analysing bidding trends in online auctions. In 2009 Sixth International Conference on Information Technology: New Generations (pp. 928–933). DOI: 10.1109/ITNG.2009.315.10.1109/ITNG.2009.315
  4. Bandyopadhyay, S., Bandyopadhyay, S. (2009). Estimating time required to reach bid levels in online auctions. Journal of Management Information Systems, 26 (3), 275-301. DOI: 10.2753/MIS0742-1222260309.10.2753/MIS0742-1222260309
  5. Bapna, R., Day R., Rice, S. (2020). Allocative Efficiency in Online Auctions: Improving the Performance of Multiple Online Auctions Via Seek-and-Protect Agents. Production and Operations Management, 29 (8), 1878–1893. DOI: 10.1111/poms.13194.10.1111/poms.13194
  6. Ben Rhouma, T., Zaccour, G. (2012). An empirical investigation of late bidding in online auctions. Economics Letters, 117 (3), 715–717. DOI: 10.1016/j.econlet.2011.12.022.10.1016/j.econlet.2011.12.022
  7. Borle, S., Boatwright, P., Kadane, J. (2006). The timing of bid placement and extent of multiple bidding: An empirical investigation using eBay online auctions. Statistical Science, 21 (2), 194–205. DOI: 10.1214/08834230600000012.10.1214/088342306000000123
  8. Bose, S., Daripa, A. (2017). Shills and snipes. Games and Economic Behavior, 104, 507–516. DOI: 10.1016/j.geb.2017.05.010.10.1016/j.geb.2017.05.010
  9. Bradlow, E., Park, Y. (2007). Bayesian estimation of bid sequences in Internet auctions using a generalized record-breaking model. Marketing Science, 26 (2), 218–229. DOI: 10.1287/mksc.1060.0225.10.1287/mksc.1060.0225
  10. Canals-Cerdá, J. (2012). The value of a good reputation online: An application to art auctions. Journal of Cultural Economics, 36 (1), 67–85. DOI: 10.2139/ssrn.1123599.10.2139/ssrn.1123599
  11. Chan, N., Li, Z., Yau, C. (2014). Forecasting online auctions via self-exciting point processes. Journal of Forecasting, 33 (7), 501–514. DOI: 10.1002/for.2313.10.1002/for.2313
  12. Chow, V. (2019). Predicting Auction Price of Vehicle License Plate with Deep Residual Learning. Lecture Notes in Computer Science, 11607, 179–188. DOI: 10.48550/arXiv.1910.04879.10.1007/978-3-030-26142-9_16
  13. Cui, X., Lai, V., Lowry, P., Lei, Y. (2020). The effects of bidder factors on online bidding strategies: A motivation-opportunity-ability (MOA) model. Decision Support Systems, 138, 1–36. DOI: 10.2139/ssrn.3679508.10.2139/ssrn.3679508
  14. Czerwonka, P. Zakonnik, L., (2015). Analysis of Selected Behavior of Online Auctions Users. Przedsiębiorczość i Zarządzania, XVI (9, II), 67–81.
  15. Czerwonka, P., Zakonnik, L., Podgórski G. (2022). The Issue of Overestimating the Final Price in Online Auctions In The Context of User Experience – Based on Selected EEU Markets. Proceeding 39th International Business Information Management Association Conference (IBIMA).
  16. Du, L., Hua, G. (2010). Bidding strategy and participating threshold in online English auction with buy-it-now option. Proceedings – 2010 IEEE 17th International Conference on Industrial Engineering and Engineering Management. IE and EM2010. DOI: 10.1109/ICIEEM.2010.5646603.10.1109/ICIEEM.2010.5646603
  17. Elhadary, O. (2010). Is the first bid really important in online auctions? International Conference e-Commerce 2010 (pp. 139–143). MCCSIS.
  18. Feng, C., Fay, S., Sivakumar, K. (2016). Overbidding in electronic auctions: factors influencing the propensity to overbid and the magnitude of overbidding. Journal of the Academy of Marketing Science, 44 (2), 241–260. DOI: 10.1007/s11747-015-0450-9.10.1007/s11747-015-0450-9
  19. Haruvy, E., Popkowski-Leszczyc, P. (2010). Search and choice in online consumer auctions. Marketing Science, 29 (6), 1152–1164. DOI: 10.1287/mksc.1100.0601.10.1287/mksc.1100.0601
  20. Hayne, S., Wang, H., Mendonca, S. (2012). eBay as the ‘Terminator’: Determining User Suspension From Feedback Ratings. Journal of Organizational Computing and Electronic Commerce, 22 (2), 160–183. DOI: 10.1080/10919392.2012.667714.10.1080/10919392.2012.667714
  21. IBM Support, Cox-Snell and Nagelkerke R^2 (R-squared) statistics – formula and references (2022). Retrieved from https://www.ibm.com/support/pages/cox-snell-and-nagelkerke-r2-r-squared-statistics-formula-and-references.
  22. Jank, W., Shmueli, G. (2010). Forecasting online auctions using dynamic models. Frontiers in Artificial Intelligence and Applications, 218, 137–148. DOI: 10.3233/978-1-60750-633-1-137.10.1002/9780470642603
  23. Kamins, M., Noy, A., Steinhart, Y., Mazursky, D. (2011). The Effect of Social Cues on Sniping Behavior in Internet Auctions: Field Evidence and a Lab Experiment. Journal of Interactive Marketing, 25 (4), 241–250. DOI: 10.1016/j.intmar.2011.03.002.10.1016/j.intmar.2011.03.002
  24. Kaur, P., Goyal, M., Lu, J. (2017). A Comparison of Bidding Strategies for Online Auctions Using Fuzzy Reasoning and Negotiation Decision Functions. IEEE Transactions on Fuzzy Systems, 25 (2), 425–438. DOI: 10.1109/tfuzz.2016.2598297.10.1109/TFUZZ.2016.2598297
  25. Khadge, M., Kulkarni, M. (2016). Machine learning approach for predicting end price of online auction. Proceedings of the International Conference on Inventive Computation Technologies. ICICT. DOI: 10.1109/INVENTIVE.2016.7830232.10.1109/INVENTIVE.2016.7830232
  26. Klemperer, P. (2004). Auctions: Theory and Practice. Princeton: Princeton University Press.10.1515/9780691186290
  27. Kuruzovich, J. (2012). Time and online auctions. Journal of Electronic Commerce Research, 13 (1), 23–32.
  28. Li, C. (2012). Characteristics of bid processes in online auctions. Advanced Materials Research, 403–408, 5199–5203. DOI: 10.4028/www.scientific.net/AMR.403-408.5199.10.4028/www.scientific.net/AMR.403-408.5199
  29. Li, X., Dong, H., Han, S. (2020). Multiple Linear Regression with Kalman Filter for Predicting End Prices of Online Auctions. Proceedings – IEEE 18th International Conference on Dependable, Autonomic and Secure Computing. DASC/PiCom/CBDCom/CyberSciTech. DOI: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00042.10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00042
  30. Liu, Y., Feng, Y., Shao, Z. (2009). Online auction final price forecasting model based on Bagging and decision tree. Systems Engineering – Theory & Practice, 29 (12), 134–140.10.1016/S1874-8651(10)60093-2
  31. Majadi, N., Trevathan, J., Bergmann, N. (2018). Real-time collusive shill bidding detection in online auctions. Lecture Notes in Computer Science, 34, 184–192. DOI: 10.1016/j. elerap.2019.100831.10.1016/j.elerap.2019.100831
  32. Majadi, N., Trevathan, J., Gray, H. (2018). A run-time algorithm for detecting shill bidding in online auctions. Journal of Theoretical and Applied Electronic Commerce Research, 13 (3), 17–49. DOI: 10.4067/S0718-18762018000300103.10.4067/S0718-18762018000300103
  33. Muthitacharoen, A., Tams, S. (2017). The Role of Auction Duration in Bidder Strategies and Auction Prices. International Journal of Electronic Commerce, 21 (1), 71–102. DOI: 10.1080/10864415.2016.1204190.10.1080/10864415.2016.1204190
  34. Niedzwiedziński, M., Zakonnik, L. (2018). Participants of Online Auctions and their Behavior in the Process of Shaping Prices – Consumer Surveys. Przedsiebiorczosc i Zarzadzanie, XIX (5, I), 237–250.
  35. Ødegaard, F., Puterman, M. (2012). Estimating intermediate price transitions in online auctions. Applied Stochastic Models in Business and Industry, 28 (6), 529–541. DOI: 10.1002/asmb.928.10.1002/asmb.928
  36. Onur, I., Velamuri, M. (2014). Competition, endogeneity and the winning bid: An empirical analysis of eBay auctions. Information Economics and Policy, 26 (1), 68–74. DOI: 10.1016/j.infoecopol.2013.11.003.10.1016/j.infoecopol.2013.11.003
  37. Park, Y., Bradlow, E. (2005). An integrated model for bidding behavior in Internet auctions: Whether, who, when, and how much. Journal of Marketing Research, 42 (4), 470–482. DOI: 10.1509/jmkr.2005.42.4.470.10.1509/jmkr.2005.42.4.470
  38. Porebski, K., Zakonnik, L. (2019). Analysis of the Impact of Specific Factors on Purchase Decisions. Przedsiebiorczosc i Zarzadzanie, XX (12, 1), 213–225.
  39. Rószkiewicz, M. (2011). Analiza Klienta. Kraków: SPPS Polska.
  40. Srinivasan, K., Wang, X. (2010). Bidders’ experience and learning in online auctions: Issues and implications. Marketing Science, 29 (6), 988–993. DOI: 10.1287/mksc.1100.0581.10.1287/mksc.1100.0581
  41. Trevathan, J., Read, W. (2006). Undesirable and Fraudulent Behaviour in Online Auctions. Proceedings of the International Conference on Security and Cryptography (pp. 1–9). Setúbal. DOI: 10.5220/0002100704500458.10.5220/0002100704500458
  42. Trevathan, J., Read, W., Lee, Y., Atkinson, I. (2011). Targeting the strategies of a bid sniper. Proceedings of the Annual Hawaii International Conference on System Sciences. DOI: 10.1109/HICSS.2011.396.10.1109/HICSS.2011.396
  43. Tsai, M., Huang, T. (2011). Using genetic algorithm to help the seller strategies in online auction. Key Engineering Materials, 474–476, 1760–1763. DOI: 10.4028/www.scientific.net/KEM.474-476.1760.10.4028/www.scientific.net/KEM.474-476.1760
  44. Yokotani, T., Huang, H., Kawagoe, K. (2012). Predicting online auction final prices using time series splitting and clustering. Lecture Notes in Computer Science, 7235, 207–218. DOI: 10.1007/978-3-642-29253-8_18.10.1007/978-3-642-29253-8_18
  45. Zafari, B., Soyer, R. (2020). Modeling first bid in retail secondary market online auctions: A Bayesian approach. Applied Stochastic Models in Business and Industry, 36 (3), 452–464. DOI: 10.1002/asmb.2498.10.1002/asmb.2498
  46. Zafari, B., Soyer, R. (2021). Assessment of uncertainty in bid arrival times: A Bayesian mixture model. Journal of the Operational Research Society, 72 (11), 2517–2528. DOI: 10.1080/01605682.2020.1796539.10.1080/01605682.2020.1796539
  47. Zakonnik, L. (2019). Consumer behavior and the price formation of used goods on the electronic market. Zachowania konsumenta a kształtowanie się ceny dóbr używanych na rynku elektronicznym. Łódź: Uniwersytet Łódzki.10.18778/8088-934-7
  48. Zakonnik L. (2021). Editorial models of 19th-century polish bibles – An attempt at identification, Biblical Annals, 11 (2), 327–374, DOI: 10.31743/biban.12185.10.31743/biban.12185
  49. Zakonnik, L., Czerwonka, P., Podgórski, G., Zajdel, K., Zajdel, R. (2022). Art Market Investment Bubble during COVID-19 – Case Study of the Rare Books Market in Poland. Sustainability, 14 (18), 11648, DOI: 10.3390/su141811648.10.3390/su141811648
DOI: https://doi.org/10.2478/foli-2022-0029 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 246 - 264
Submitted on: Mar 23, 2022
Accepted on: Oct 10, 2022
Published on: Dec 20, 2022
Published by: University of Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Łukasz Zakonnik, Piotr Czerwonka, Radosław Zajdel, published by University of Szczecin
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.