Have a personal or library account? Click to login
European Green Deal Implications on Country Level Energy Consumption Cover

European Green Deal Implications on Country Level Energy Consumption

Open Access
|Dec 2022

References

  1. Bansal, P., Kumar, R.R., Raj, A., Dubey, S., Graham, D.J. (2021) Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles. Energy Economics, 100, 105340. DOI: 10.1016/J.ENECO.2021.105340.10.1016/j.eneco.2021.105340
  2. Björnsson, L.H., Karlsson, S. (2017). Electrification of the two-car household: PHEV or BEV? Transportation Research Part C Emerging Technologies, 85, 363–376. DOI: 10.1016/j. trc.2017.09.021.10.1016/j.trc.2017.09.021
  3. Chai, J, Lu, Q.Y., Wang, S.Y. (2016). Analysis of road transportation energy consumption demand in China. Transport Research Part D, Transport and Environment, 48, 112–124. DOI: 10.1016/j.trd.2016.08.009.10.1016/j.trd.2016.08.009
  4. Dong, Y. (2022). Analysis of Consumers’ Willingness to Accept of Government Subsidies for Electric Vehicles. Transportation Research Procedia, 61, 90-97. DOI: 10.1016/j. trpro.2022.01.016.10.1016/j.trpro.2022.01.016
  5. European Commission (2019). National energy and climate action plan of the Republic of Lithuania for 2021–2030.
  6. European Commission (2019). The European Green Deal, Communication from the Commission, COM (2019) 640 final.
  7. Fu, S., Fu, H. (2021). A method to predict electric vehicles’ market penetration as well as its impact on energy saving and CO2 mitigation. Science Progress, 104 (3). DOI: 10.1177/00368504211040286.10.1177/00368504211040286
  8. Gerossier, A., Girard, R., Kariniotakis, G.N. (2019). Modeling and Forecasting Electric Vehicle Consumption Profiles. Energies, 12 (7), 1341. DOI: 10.3390/en12071341.10.3390/en12071341
  9. Glerum, A., Stankovikj, L., Themans, M., Bierlaire, M. (2013). Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions. Transportation Science, 48 (4), 483–499. DOI: 10.1287/trsc.2013.0487.10.1287/trsc.2013.0487
  10. Gough, R., Dickerson, C., Rowley, P., Walsh, C. (2017). Vehicle-to-grid feasibility: A technoeconomic analysis of EV-based energy storage. Applied Energy, 192 (C), 12–23. DOI: /10.1016/j.apenergy.2017.01.102.10.1016/j.apenergy.2017.01.102
  11. Haas, T., Sander, H. (2020) Decarbonizing Transport in the European Union: Emission Performance Standards and the Perspectives for a European Green Deal. Sustainability, 12 (20), 8381. DOI: 10.3390/su12208381.10.3390/su12208381
  12. Haben, S., Ward, J., Greetham, D.V., Singleton, C.; Grindrod, P. (2014). A new error measure for forecasts of household-level, high resolution electrical energy consumption. International Journal Forecasting, 30 (2), 246–256. DOI: 10.1016/j.ijforecast.2013.08.002.10.1016/j.ijforecast.2013.08.002
  13. Hagman, J., Ritzen, S., Janhager, J., Susilo, Y.O. (2016). Total cost of ownership and its potential implications for battery electric vehicle diffusion. Research in Transportation Business and Management, 18, 11–17. DOI: 10.1016/j.rtbm.2016.01.003.10.1016/j.rtbm.2016.01.003
  14. Hong, Tao, Pinson, P., Fan, S. Zareipour, H., Troccoli, A., Hyndman, R.J. (2016). Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting, 32 (3), 896–913. DOI: 10.1016/j.ijforecast.2016.02.001.10.1016/j.ijforecast.2016.02.001
  15. Huang, X., Ge, J. (2019) Electric vehicle development in Beijing: An analysis of consumer purchase intention. Journal of Cleaner Production, 216, 361–372. DOI: 10.1016/J.JCLEPRO.2019.01.231.10.1016/j.jclepro.2019.01.231
  16. Jaržemskis, A., Speičytė, E., Padvilikis, G. (2012) Research into User Behaviour to Evaluate Demand for Technical Parameters of Electric Vehicles, Proceedings of 16 International Conference Transporto means (pp. 346–349).
  17. Jing, Y., Zhang, Z., Shi, H., Wang, J., Xu, R., Li, M. (2021). The present and future of electric vehicles: Market analysis and forecast of different types of electric vehicles. International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). DOI: 10.1109/AIEA53260.2021.00042.10.1109/AIEA53260.2021.00042
  18. Jochem. P, Doll. C., Fichtner. W. (2016). External costs of electric vehicles. Transport Research Part D, Transport and Environment, 42, 60–76. DOI: 10.1016/J.TRD.2015.09.022.10.1016/j.trd.2015.09.022
  19. Karlsson, S. (2017). What are the value and implications of two-car households for the electric car? Transportation Research Part C Emerging Technologies, 81, 1–17. DOI: 10.1016/j.trc.2017.05.001.10.1016/j.trc.2017.05.001
  20. Kim, J., Yu, Ch. J., Khammuang, M., Liu, J. Almujahid, A. (2017). Forecasting Battery Electric Vehicles, IEEE Technology & Engineering Management Conference (TEMSCON). DOI: 10.1109/TEMSCON.2017.7998377.10.1109/TEMSCON.2017.7998377
  21. Kim, J.H., Kim, H.J., Yoo, S.H. (2019) Willingness to pay for fuel-cell electric vehicles in South Korea. Energy, 174, 497–502. DOI: 10.1016/j.energy.2019.02.185.10.1016/j.energy.2019.02.185
  22. Koralova-Nozharova, P. (2021) European Green Deal and transport sector development – opportunities or restrictions. SHS Web of Conferences. Les Ulis, 120.10.1051/shsconf/202112004004
  23. Kougias, I., Taylor, N. Kakoulaki, G. Jäger-Waldau, A. (2021) The role of photovoltaics for the European Green Deal and the recovery plan. Renewable and Sustainable Energy Reviews, 144 (7), 111017. DOI: 10.1016/j.rser.2021.111017.10.1016/j.rser.2021.111017
  24. Lin, C. (2013). Life-cycle private costs of hybrid electric vehicles in the current Chinese market. Energy Policy, 55, 501–510. DOI: 10.1016/j.jclepro.2006.05.026.10.1016/j.jclepro.2006.05.026
  25. Ma, S.C., Xu, J.H., Fan, Y. (2019) Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China. Energy Economics, 81, 197–215. DOI: 10.1016/j.eneco.2019.03.012.10.1016/j.eneco.2019.03.012
  26. Manjunath, A., Gross G. (2017). Towards meaningful metric for the quantification of GHG emissions of electric vehicles. Energy Policy, 102, 423–429. DOI: 10.1016/j.enpol.2016.12.003.10.1016/j.enpol.2016.12.003
  27. Moon, H., Park, S.Y., Lee, J. (2018). Forecasting electricity demand of electric vehicles by analyzing consumers’ charging patterns. Transportation Research Part D Transport and Environment, 62, 64–79. DOI: 10.1016/j.trd.2018.02.009.10.1016/j.trd.2018.02.009
  28. Musti, S., Kockelman, K.M. (2011). Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas. Transport Research Part A: Policy Practices, 45 (8), 707–720. DOI: 10.1016/j.tra.2011.04.011.10.1016/j.tra.2011.04.011
  29. Mwasilu, F., Justo, J.J., Kim, E.K., Do, T.D., Jung, J.W. (2014). Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustainable. Energy Review, 34, 501–516. DOI: 10.1016/j.rser.2014.03.031.10.1016/j.rser.2014.03.031
  30. Noel, L., Papu Carrone, A., Jensen, A.F., Zarazua de Rubens, G., Kester, J., Sovacool, B.K. (2019) Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment. Energy Economics, 78, 525–534. DOI: 10.1016/j.eneco.2018.12.014.10.1016/j.eneco.2018.12.014
  31. Pasaoglu, G., Honselaar, M., Thiel, C. (2012). Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe. Energy Policy, 40, 404–421. DOI: 10.1016/j.enpol.2011.10.025.10.1016/j.enpol.2011.10.025
  32. Peng, Z., Yu, Z., Wang, H., Yang, S. (2014). Research on industrialization of electric vehicles with its demand forecast using exponential smoothing method. Journal of Industrial Engineering and Management, 8 (2), 365–382. DOI: 10.3926/jiem.1287.10.3926/jiem.1287
  33. Song, Y., Li, G., Wang, Q., Meng, X., Wang H. (2020) Scenario analysis on subsidy policies for the uptake of electric vehicles industry in China. Resources, Conservation and Recycling, 161. DOI: 10.1016/J.RESCONREC.2020.104927.10.1016/j.resconrec.2020.104927
  34. Tamor, M.A., Gearhart, C., Soto, C. (2013). A statistical approach to estimating acceptance of electric vehicles and electrification of personal transportation. Transportation Research Part C, Emerging Technologies, 26, 125–134. DOI: 10.1016/j.trc.2012.07.007.10.1016/j.trc.2012.07.007
  35. Wikstrom, M., Hansson, L., Alvfors, P. (2016). Investigating barriers for plug-in electric vehicle development in fleets. Transport Research Part D, Transport and Environment, 49, 59–67. DOI: 10.1016/j.trd.2016.08.008.10.1016/j.trd.2016.08.008
  36. Wolf, S., Korzynietz, R. (2019). Innovation Needs for the Integration of Electric Vehicles into the Energy System. World Electric Vehicle Journal, 10 (4), 76. DOI: 10.3390/wevj10040076.10.3390/wevj10040076
  37. Wu, G., Inderbitzin, A., Bening, C. (2015). Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy, 80, 196–214. DOI: 10.1016/j.enpol.2015.02.004.10.1016/j.enpol.2015.02.004
  38. Wu, Y.A., Ng, A.W., Yu, Z., Huang, J., Meng, K., Dong, Z.Y. (2021) A review of evolutionary policy incentives for sustainable development of electric vehicles in China: Strategic implications. Energy Policy, 148. DOI: 10.1016/J.ENPOL.2020.111983.10.1016/j.enpol.2020.111983
  39. Zhang, Q, Ou, X.M, Yan, X.Y. (2017). Electric vehicle market penetration and impacts on energy consumption and CO2 emission in the future: Beijing case. Energies, 10 (2), 1–15. DOI: 10.3390/en10020228.10.3390/en10020228
DOI: https://doi.org/10.2478/foli-2022-0021 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 97 - 122
Submitted on: Jul 2, 2022
Accepted on: Oct 11, 2022
Published on: Dec 20, 2022
Published by: University of Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Andrius Jaržemskis, Ilona Jaržemskienė, published by University of Szczecin
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.