Have a personal or library account? Click to login
A Comparison of Variables Selection Methods and their Sequential Application: A Case Study of the Bankruptcy of Polish Companies Cover

A Comparison of Variables Selection Methods and their Sequential Application: A Case Study of the Bankruptcy of Polish Companies

Open Access
|Aug 2020

References

  1. Alaka, H.A., Oyedele, O.L. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164–184. DOI: 10.1016/j.eswa.2017.10.040.10.1016/j.eswa.2017.10.040
  2. Altman, E.I. (1968). Financial Ratios, Discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23 (4).10.1111/j.1540-6261.1968.tb00843.x
  3. Barboza, F., Kimura, H., Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. DOI: 10.1016/j.eswa.2017.04.006.10.1016/j.eswa.2017.04.006
  4. Fleiss, J.L., Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33, 613–619.10.1177/001316447303300309
  5. Friedman, J., Hastie, T., Tibshirani, R. (2013). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. The Mathematical Intelligencer, 27 (2), 83–85. DOI: 10.1007/BF02985802.10.1007/BF02985802
  6. Greenberg, E. (2012). Introduction to Bayesian Econometrics. New York, NY: Cambridge University Press. DOI: 10.1017/CBO9781139058414.10.1017/CBO9781139058414
  7. Gruszczyński, M. (ed.) (2012). Mikroekonometria. Modele i metody analizy danych indywidualnych. Warszawa: Wolters Kluwer Polska.
  8. Gruszczyński, M. (2003). Modele mikroekonometrii w analizie i prognozowaniu zagrożenia finansowego przedsiębiorstw. Zeszyty Polskiej Akademii Nauk, 34.
  9. Hołda, A. (2000). Optymalizacja i model zastosowania procedur analitycznych w rewizji sprawozdań finansowych. Kraków: Akademia Ekonomiczna.
  10. Höglund, H. (2017). Tax payment default prediction using genetic algorithm-based variable selection. Expert Systems with Applications, 88, 368–375. DOI: 10.1016/j.eswa.2017.07.027.10.1016/j.eswa.2017.07.027
  11. Iturriaga, F.L., Sanz, I.P. (2015). Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks. Expert Systems with Applications, 42 (6), 2857–2869. DOI: 10.1016/j.eswa.2014.11.025.10.1016/j.eswa.2014.11.025
  12. Jolliffe, I. (2011). Principal Component Analysis. In: M., Lovric (ed.), International Encyclopedia of Statistical Science. Berlin–Heidelberg: Springer. DOI: 10.1007/978-3-642-04898-2_455.10.1007/978-3-642-04898-2_455
  13. Karr, C. (1995). Adaptive control of an exothermic chemical reaction system using fuzzy logic and genetic algorithms. In: L.R., Medsker (ed.), Hybrid intelligent systems (pp. 187–203). New York, NY: Springer US.
  14. Mączyńska, E., Zawadzki, M. (2006). Dyskryminacyjne modele predykcji bankructwa przedsiębiorstw. Ekonomista, 2, 205–235.
  15. McFadden, D.L. (1974). Conditional logit analysis of qualitative choice behaviour. Frontiers in econometrics (pp. 105–142). New York: Academic Press.
  16. Merton, R. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. Journal of Finance, 29, 449–470.
  17. Merwin, C. (1942). Financing small corporations in five manufacturing industries, 1926–1936. New York: National Bureau of Economic Research.
  18. Obermann, L., Waack, S. (2015). Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks. Expert Systems with Applications, 42 (23), 9117–9128. DOI: 10.1016/j.eswa.2015.08.009.10.1016/j.eswa.2015.08.009
  19. Ohlson, J. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18 (1), 109–131. DOI: 10.2307/2490395.10.2307/2490395
  20. Pereira, J., Basto, M., Ferreira, A. (2016). The Logistic Lasso and Ridge Regression in Predicting Corporate Failure. Procedia Economics and Finance, 39, 634–641. DOI: 10.1016/S2212-5671(16)30310-0.10.1016/S2212-5671(16)30310-0
  21. Prusak, B. (2005). Nowoczesne metody prognozowania zagrożenia finansowego przedsiębiorstwa. Warszawa: Difin.
  22. Rutenbar, R.A. (1989). Simulated annealing algorithms: an overview. IEEE Circuits and Devices Magazine, 5 (1), 19–26. DOI: 10.1109/101.17235.10.1109/101.17235
  23. Smith, R., Winakor, A. (1935). Changes in financial structure of unsuccessful industrial corporations. The Accounting Review, 10 (2), 174–184.
  24. Shin, K., Lee, Y. (2002). A genetic algorithm application in bankruptcy prediction modelling. Expert Systems with Applications, 23 (3), 321–328. DOI: 10.1016/S0957-4174(02)00051-9.10.1016/S0957-4174(02)00051-9
  25. Sun, J., Hui, L. (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, 57, 41–56. DOI: 10.1016/j.knosys.2013.12.006.10.1016/j.knosys.2013.12.006
  26. Tian, S. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89–100. DOI: 10.1016/j.jbankfin.2014.12.003.10.1016/j.jbankfin.2014.12.003
  27. Traczynski, J. (2017). Firm Default Prediction: A Bayesian Model-Averaging Approach. Journal of Financial and Quantitative Analysis, 52 (3), 1211–1245. DOI: 10.1017/S002210901700031X.10.1017/S002210901700031X
  28. Zieba, M., Tomczak, S.K., Tomczak, J.M. (2016). Ensemble Boosted Trees with Synthetic Features Generation in Application to Bankruptcy Prediction. Expert Systems with Applications, 58, 93–101. DOI: 10.1016/j.eswa.2016.04.001.10.1016/j.eswa.2016.04.001
DOI: https://doi.org/10.2478/foli-2020-0031 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 531 - 543
Submitted on: Aug 28, 2019
Accepted on: Mar 19, 2020
Published on: Aug 20, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Mikhail Zanka, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.