Alaka, H.A., Oyedele, O.L. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164–184. DOI: 10.1016/j.eswa.2017.10.040.10.1016/j.eswa.2017.10.040
Altman, E.I. (1968). Financial Ratios, Discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23 (4).10.1111/j.1540-6261.1968.tb00843.x
Fleiss, J.L., Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33, 613–619.10.1177/001316447303300309
Friedman, J., Hastie, T., Tibshirani, R. (2013). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. The Mathematical Intelligencer, 27 (2), 83–85. DOI: 10.1007/BF02985802.10.1007/BF02985802
Gruszczyński, M. (2003). Modele mikroekonometrii w analizie i prognozowaniu zagrożenia finansowego przedsiębiorstw. Zeszyty Polskiej Akademii Nauk, 34.
Iturriaga, F.L., Sanz, I.P. (2015). Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks. Expert Systems with Applications, 42 (6), 2857–2869. DOI: 10.1016/j.eswa.2014.11.025.10.1016/j.eswa.2014.11.025
Karr, C. (1995). Adaptive control of an exothermic chemical reaction system using fuzzy logic and genetic algorithms. In: L.R., Medsker (ed.), Hybrid intelligent systems (pp. 187–203). New York, NY: Springer US.
Obermann, L., Waack, S. (2015). Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks. Expert Systems with Applications, 42 (23), 9117–9128. DOI: 10.1016/j.eswa.2015.08.009.10.1016/j.eswa.2015.08.009
Ohlson, J. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18 (1), 109–131. DOI: 10.2307/2490395.10.2307/2490395
Sun, J., Hui, L. (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, 57, 41–56. DOI: 10.1016/j.knosys.2013.12.006.10.1016/j.knosys.2013.12.006
Zieba, M., Tomczak, S.K., Tomczak, J.M. (2016). Ensemble Boosted Trees with Synthetic Features Generation in Application to Bankruptcy Prediction. Expert Systems with Applications, 58, 93–101. DOI: 10.1016/j.eswa.2016.04.001.10.1016/j.eswa.2016.04.001