Have a personal or library account? Click to login
The Use of the Incomplete Tetrad Method for Measuring the Similarities in Nonmetric Multidimensional Scaling Cover

The Use of the Incomplete Tetrad Method for Measuring the Similarities in Nonmetric Multidimensional Scaling

Open Access
|Aug 2020

References

  1. Bijmolt, T.H.A. (1996). Multidimensional Scaling in Marketing: Towards Integrating Data Collection and Analysis. Capelle a/d Ussel: Labyrint Publication.
  2. Bisset, R., Schneider, B. (1991). Spatial and conjoint models based on pairwise comparisons of dissimilarities and combined effects: Complete and incomplete designs. Psychometrika, 56 (4), 685–698. DOI: 10.1007/BF02294499.10.1007/BF02294499
  3. Borg, I., Groenen, P. (2005). Modern Multidimensional Scaling. Theory and Applications. Second Edition. New York: Springer-Verlag.
  4. Cochran, W.G., Cox, G.M. (1957). Experimental Design. 2nd ed. New York: Wiley.
  5. Cox, T.F., Cox, M.A.A. (2001). Multidimensional Scaling. Second Edition. London: Chapman and Hall.
  6. Graef, J., Spence, I. (1979). Using distance information in the design of large multidimensional experiments. Psychological Bulletin, 86 (1), 60–66. DOI: 10.1037//0033-2909.86.1.60.10.1037/0033-2909.86.1.60
  7. Kruskal, J.B. (1964a). Multidimensional scaling by optimising goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27. DOI: 10.1007/BF02289565.10.1007/BF02289565
  8. Kruskal, J.B. (1964b). Nonmetric Multidimensional Scaling: a Numerical Method. Psychometrika, 29, 115–129. DOI: 10.1007/BF02289694.10.1007/BF02289694
  9. Humphreys, M.A. (1982). Data collecting effects on nonmetric multidimensional scaling solutions. Educational and Psychological Measurement, 42, 1005–1022. DOI: 10.1177/001316448204200408.10.1177/001316448204200408
  10. Morris, M. (2010). Design of Experiments: An Introduction Based on Linear Models. New York: Chapman and Hall/CRC.10.1201/9781439894903
  11. Rink, D.R. (1987). An improved preference data collection method: Balanced incomplete block designs. Journal of the Academy of Marketing Science, 15 (3), 54–61. DOI: 10.1007/BF02721954.10.1007/BF02721954
  12. Spence, I., Domoney, D.W. (1974). Single subject incomplete design for nonmetric multidimensional scaling. Psychometrika, 39 (4), 469–490. DOI: 10.1007/BF02291669.10.1007/BF02291669
  13. Tsogo, L., Masson, M.H., Bardot, A. (2000). Multidimensional Scaling Methods for Many-Object Sets: A Review, Multivariate Behavioral Research, 35 (3), 307–319. DOI: 10.1207/S15327906MBR3503_02.10.1207/S15327906MBR3503_02
  14. Zaborski, A. (2001). Skalowanie wielowymiarowe w badaniach marketingowych. Wrocław: Wydawnictwo Akademii Ekonomicznej we Wrocławiu.
  15. Zaborski, A. (2003). Wpływ alternatywnych metod pomiaru preferencji na wyniki skalowania wielowymiarowego. Prace Naukowe AE w Katowicach, Analiza i prognozowanie zjawisk o charakterze niemetrycznym, 59–69.
  16. Zaborski, A. (2016). The Presentation of Changes in Preferences by Dynamic Scaling. Acta Universitatis Lodziensis. Folia Oeconomica 3 (322), 55–62. DOI: 10.18778/0208-6018.322.06.10.18778/0208-6018.322.06
  17. Zaborski, A. (2017). The Influence of Triad Selection on the Preference Scaling Results. Acta Universitatis Lodziensis. Folia Oeconomica, 4 (330), 87–97. DOI: 10.18778/0208-6018.330.06.10.18778/0208-6018.330.06
DOI: https://doi.org/10.2478/foli-2020-0030 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 519 - 530
Submitted on: Nov 8, 2019
Accepted on: Mar 19, 2020
Published on: Aug 20, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Artur Zaborski, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.