Chawla, N.V., Japkowicz, N., Kołcz, A. (2004). Special issue on learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6 (1), 1–6.10.1145/1007730.1007733
Dua, D., Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. Retrieved from: http://archive.ics.uci.edu/ml (17.06.2019).
Fayyad, U., Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (pp. 1022–1027).
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F. (2011). A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42 (4), 463–484.10.1109/TSMCC.2011.2161285
Guyon, I., Weston, J., Barnhill, S., Vapnik, V. (2002). Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46, 389–422.10.1023/A:1012487302797
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220–239.10.1016/j.eswa.2016.12.035
Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF, Proceedings of European Conference on Machine Learning (pp. 171–182).10.1007/3-540-57868-4_57
Kubus, M. (2015). Rekurencyjna eliminacja cech w metodach dyskryminacji. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 384. Taksonomia, 24, 154–162. DOI: 10.15611/pn.2015.384.16.10.15611/pn.2015.384.16
Kubus, M. (2016). Lokalna ocena mocy dyskryminacyjnej zmiennych. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 427, Taksonomia 27, 143–152. DOI: 10.15611/pn.2016.427.15.10.15611/pn.2016.427.15
Longadge, R., Dongre, S.S., Malik, L. (2013). Class Imbalance Problem in Data Mining: Review. International Journal of Computer Science and Network, 2 (1), 83–87.
Menardi, G., Torelli, N. (2014). Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery, 28, 92–122.10.1007/s10618-012-0295-5
Pociecha, J., Pawełek, B., Baryła, M., Augustyn, S. (2014). Statystyczne metody prognozowania bankructwa w zmieniającej się koniunkturze gospodarczej. Kraków: Fundacja Uniwersytetu Ekonomicznego w Krakowie.
Tsamardinos, I., Aliferis, C.F. (2003). Towards principled feature selection: relevancy, filters and wrappers. In Proceedings of the Workshop on Artificial Intelligence and Statistics.
Zou, H., Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B, 67 (2), 301–320.10.1111/j.1467-9868.2005.00503.x