Have a personal or library account? Click to login
Influence of forest stand on the reproductive biology of the edible dormouse Glis glis Cover

Influence of forest stand on the reproductive biology of the edible dormouse Glis glis

Open Access
|Jan 2026

References

  1. Atlas ssaków Polski [Atlas of mammals of Poland]. Warszawa: IOP PAN. [cit. 2025-08-25]. https://www.iop.krakow.pl/Ssaki/gatunek/84. (In Polish).
  2. Abbass, K., Qasim, M.Z., Song, H., Murshed, M., Mahmood, H., Younis, I., 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29: 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
  3. Bieber, C., 1998. Population dynamics, sexual activity and reproduction failure in the fat dormouse (Myoxus glis). Journal of Zoology, 244: 223–229. https://doi.org/10.1111/j.1469-7998.1998.tb00027.x
  4. Bieber, C., Ruf, T., 2004. Seasonal timing of reproduction and hibernation in the edible dormouse (Glis glis). In Barnes, B.M., Carey, H.V. (eds). Life in the cold V: evolution, mechanism, adaptation, and application. Twelfth International Hibernation Symposium. Fairbanks: University of Alaska Fairbanks, Institute of Arctic Biology, p. 113–125.
  5. Bogdziewicz, M., Kelly, D., Thomas, P.A., Lageard, J.G.A., Hacket-Pain, A., 2020. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nature Plants, 6: 88–94. https://doi.org/10.1038/s41477-020-0592-8
  6. Cornils, J.S., Hoelzl, F., Rotter, B., Bieber, C., Ruf, T., 2017. Edible dormice (Glis glis) avoid areas with a high density of their preferred food plant – the European beech. Frontiers in Zoology, 14: 23. https://doi.org/10.1186/s12983-017-0206-0
  7. Grodziński, W., Sawicka-Kapusta, K., 1970. Energy values of tree-seeds eaten by small mammals. Oikos, 21: 5–58. https://doi.org/10.2307/3543838
  8. Hacket-Pain, A., Bogdziewicz, M., 2021. Climate change and plant reproduction: trends and drivers of mast seeding change. Philosophical Transactions of the Royal Society B, 376: 20200379. https://doi.org/10.1098/rstb.2020.0379
  9. Hilton, G.M., Packham, J.R., 2003. Variation in the masting of common beech (Fagus sylvatica L.) in northern Europe over two centuries (1800–2001). Forestry, 76: 319–328. https://doi.org/10.1093/forestry/76.3.319
  10. Holcová Gazárková, A., Adamik, P., 2016. Timing of breeding and second litters in edible dormouse (Glis glis). Folia Zoologica, 65: 165–168. https://doi.org/10.25225/fozo.v65.i2.a12.2016
  11. Jurczyszyn, M., 2018. Food and foraging preferences of the edible dormouse Glis glis at two sites in Poland. Folia Zoologica, 67: 83–90. https://doi.org/10.25225/fozo.v67.i2.a5.2018
  12. Karels, T.J., Byrom, A.E., Boonstra, R., Krebs, C.J., 2000. The interactive effects of food and predators on reproduction and overwinter survival of arctic ground squirrels. Journal of Animal Ecology, 69: 235–247. https://doi.org/10.1046/j.1365-2656.2000.00387.x
  13. Kondracki, J., 2002. Geografia regionalna Polski [Regional geography of Poland]. Warszawa: Wydawnictwo Naukowe PWN. (In Polish).
  14. Koskela, E., Huitu, O., Koivula, M., Korpimāki, E., Mappes, T., 2004. Sex-biased maternal investment in voles: importance of environmental conditions. Proceedings of the Royal Society: B Biological Sciences, 271: 1385–1391. https://doi.org/10.1098/rspb.2004.2711
  15. Kryštufek, B., 2010. Glis glis (Rodentia: Gliridae). Mammalian Species, 42: 195–206. https://doi.org/10.1644/865.1
  16. Lebl, K., Rotter, B., Kurbisch, K., Bieber, C., Ruf, T., 2011. Local environmental factors affect reproductive investment in female edible dormice. Journal of Mammalogy, 92: 926–933. https://doi.org/10.1644/10-MAMM-A-225.1
  17. Marteau, M., Sara M., 2015. Habitat preferences of edible dormouse, Glis glis italicus: implications for the management of arboreal mammals in Mediterranean forest. Folia Zoologica, 64: 136–150. https://doi.org/10.25225/fozo.v64.i2.a7.2015
  18. Moska, M., Mucha, A., Wierzbicki, H., Nowak, B., 2021. Edible dormouse (Glis glis) population study in southwestern Poland provides evidence of multiple paternity and communal nesting. Journal of Zoology, 314: 194–202. https://doi.org/10.1111/jzo.12881
  19. Moska, M., Mucha, A., Wierzbicki, H., Nowak, B., 2023. The influence of landscape features on the population connectivity and genetic structure of the Edible Dormouse Glis glis in Poland. Journal of Mammalogy, 104: 1390–1399. https://doi.org/10.1093/jmammal/gyad078
  20. Murúa, R., Briones, M., 2005. Abundance of the sigmodont mouse Oligoryzomys longicaudatus and patterns of tree seeding in Chilean temperate forest. Mammalian Biology, 70: 321–326. https://doi.org/10.1016/j.mambio.2005.03.007
  21. Pilastro, A., Missiaglia, E., Marin, G., 1996. Age-related reproductive success in solitary and communally nesting female dormice (Glis glis). Journal of Zoology, 239: 601–608. https://doi.org/10.1111/j.1469-7998.1996.tb05946.x
  22. Pilastro, A., Tavecchia, G., Marin, G., 2003. Long living and reproduction skipping in the fat dormouse. Ecology, 84: 1784–1792. https://doi.org/10.189/0012-685(2003)084[1784:LLARSI]2.0.CO;2
  23. Pilāts, V., Pilāte, D., Dzalba, I., 2009. The use of nest box es to survey marginally distributed fat dormouse Glis glis in Latvia. Acta Universitas Latviensis Ser. Biology, 753: 7–18.
  24. Pucek, Z., 1984. Klucz do oznaczania ssaków Polski [Key-guide to mammals identification].Warszawa: Pánstwowe Wydawn. Nauk, p. 232–234. (In Polish).
  25. Pureswaran, D.S., Roques, A., Battisti, A., 2018. Forest insects and climate change. Current Forestry Report, 4: 35–50. https://doi.org/10.1007/s40725-018-0075-6
  26. R Development Core Team, 2024. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. www.R-project.org/
  27. Ruf, T., Bieber, C., 2020. Physiological, and life-history adaptations to environmental fluctuations in the edible dor-mouse. Frontiers in Physiology, 11: 423. https://doi:10.3389/fphys.2020.00423
  28. Schlund, W., Scharfe, F., Ganzhorn, J.U., 2002. Long-term comparison of food availability and reproduction in the edible dormouse (Glis glis). Mammalian Biology, 67: 219–232. https://doi.org/10.1078/1616-5047-00033
  29. Selås, V., Framstad, E., Spidso, T.K., 2002. Effects of seed masting of bilberry, oak and spruce on sympatric populations of bank vole (Clethrionomys glareolus) and wood mouse (Apodemus sylvaticus) in southern Norway. Journal of Zoology, 258: 459–468. https://doi.org/10.1017/S0952836902001619
  30. Touzot, L., Schermer, É., Venner, S., Delzon, S., Rousset, C., Baubet, É., Gaillard, J.M., Gamelon, M., 2020. How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. Ecological Applications, 30: e02134. https://doi.org/10.1002/eap.2134
  31. Vekhnik, V.A., 2020. Comparative analysis of biology and ecology of Glis glis (Gliridae, Rodentia) in the Zhiguli State Nature Reserve (Russia) and adjacent territories. Nature Conservation Research, 5: 1–20. https://doi.org/10.24189/ncr.2020.001
  32. Vekhnik, V.A., Dyuzhaeva, I.V., 2022. Invertebrates in the faeces of an arboreal and herbivorous rodent species: the edible dormouse (Glis glis) as an example. Mammalian Research, 67: 123–129. https://doi.org/10.1007/s13364-021-00608-0
  33. Yang, L.H., Bastow, J.L., Spence, K.O., Wright, A.N., 2008. What can we learn from resource pulses? Ecology, 89: 621–634. https://doi.org/10.1890/07-0175.1
DOI: https://doi.org/10.2478/foecol-2026-0002 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 16 - 23
Submitted on: Sep 25, 2025
|
Accepted on: Nov 25, 2025
|
Published on: Jan 26, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Magdalena Moska, Anna Mucha, Heliodor Wierzbicki, Błażej Nowak, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.