Have a personal or library account? Click to login
Effect of culture media on radial growth and fructification of ophiostomatoid fungi isolated from bark beetles Cover

Effect of culture media on radial growth and fructification of ophiostomatoid fungi isolated from bark beetles

Open Access
|Jan 2026

References

  1. Aas, T., Solheim, H., Jankowiak, R., Bilański, P., Hausner, G., 2018. Four new Ophiostoma species associated with hardwood-infesting bark beetles in Norway and Poland. Fungal Biology, 122: 1142‒1158. https://doi.org/10.1016/j.funbio.2018.08.001
  2. Abeysinghe, G., Kuchira, M., Kudo, G., Masuo, S., Ninomiya, A., Takahashi, K., Utada, A.S., Hagiwara, D., Nomura, N., Takaya, N., Obana, N., Takeshita, N., 2020. Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism. Life Science Alliance, 3 (12): e202000878. https://doi.org/10.26508/lsa.202000878
  3. Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67 (1): 1–48.
  4. Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Maechler, M., Bolker, B.M., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9 (2): 378–400. https://doi.org/10.32614/RJ-2017-066
  5. Deacon, J.W., 2006. Fungal Biology. Oxford: Blackwell Publishing. 371 p.
  6. Faria, J.M.S., Inácio, M.L., 2023. The influence of pine volatiles on the growth of an ophiostomatoid fungi associated with pine wilt disease in Pinus pinaster. Biology and Life Sciences Forum, 31 (1): 9. https://doi.org/10.3390/ECM2023-16454
  7. Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2: 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  8. Ge, Y.H., Li, C.Y., Lü, J.Y., Zhu, D.S., 2017. Effects of thiamine on Trichothecium and Alternaria rots of muskmelon fruit and the possible mechanisms involved. Journal of Integrative Agriculture, 16 (11): 2623–2631. https://doi.org/10.1016/S2095-3119(16)61584-8
  9. Glass, N.L., Donaldson, G.C., 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61 (4): 1323‒1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  10. Grodzki, W., 2007. Spatio-temporal patterns of the Norway spruce decline in the Beskid Śląski and Żywiecki (Western Carpathians) in southern Poland. Journal of Forest Science, 53: 38–44. https://doi.org/10.17221/2155-JFS
  11. Harrington, T.C., McNew, D., Steimel, J., Hofstra, D., Farrell, R., 2001. Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi. Mycologia, 93 (1): 111–136. https://doi.org/10.1080/00275514.2001.12061284
  12. Chang, R., Duong, A.T., Taerum, J.S., Wingfield, J.M., Zhou, X., De Beer, Z.W., 2017. Ophiostomatoid fungi associated with conifer-infesting beetles and their phoretic mites in Yunnan, China. MycoKeys, 28: 19–64. https://doi.org/10.3897/mycokeys.28.21758
  13. Chang, R., Wingfield, M.J., Marincowitz, S., De Beer, Z. W., Zhou, X., Duong, T.A., 2021. Ophiostomatoid fungi including a new species associated with Asian larch bark beetle Ips subelongatus, in Heilongjiang (Northeast China). Fungal Systematics and Evolution, 8: 155–161. https://doi.org/10.3114/fuse.2021.08.12
  14. Jacobs, K., Bergdahl, D.R., Wingfield, M.J., Halik, S., Seifert, K.A., Bright, D.E., Wingfield, B.D., 2004. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycological Research, 108 (4): 411–418. https://doi.org/10.1017/S0953756204009748
  15. Jacobs, K., Eckhardt, L.G., Wingfield, M.J., 2006. Leptographium profanum sp. nov., a new species from hard-wood roots in North America. Canadian Journal of Botany, 84 (5): 759–766. https://doi.org/10.1139/B06-030
  16. Jacobs, K., Wingfield, M.J., 2001. Leptographium species: tree pathogens, insect associates, and agents of blue-stain. St. Paul: American Phytopathological Society. 224 p.
  17. Jakab, Á., Tóth, Z., Nagy, F., Nemes, D., Bácskay, I., Kardos, G., Emri, T., Pócsi, I., Majoros, L., Kovács, R., 2019. Physiological and transcriptional responses of Candida parapsilosis to exogenous tyrosol. Applied and Environmental Microbiology, 85 (20): e01388-19. https://doi.org/10.1128/AEM.01388-19
  18. Jankowiak, R., Hilszański, J., 2005. Ophiostomatoid fungi associated with Ips typographus (L.) on Picea abies [(L.)H. Karst.] and Pinus sylvestris L. in North Eastern Poland. Acta Societatis Botanicorum Poloniae, 74 (4): 345‒350. https://doi.org/10.5586/asbp.2005.043
  19. Jankowiak, R., Ostafińska, A., Aas, T., Solheim, H., Bilański, P., Linnakoski, R., Hausner, G., 2018. Three new Leptographium spp. (Ophiostomatales) infecting hardwood trees in Norway and Poland. Antonie van Leeuwenhoek, 111: 2323–2347. https://doi.org/10.1007/s10482-018-1123-8
  20. Jin, D., Sun, B., Zhao, W., Ma, J., Zhou, Q., Han, X., Mei, Y., Fan, Y., Pei, Y., 2021. Thiamine-biosynthesis genes Bbpyr and Bbthi are required for conidial production and cell wall integrity of the entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology, 184: 107639. https://doi.org/10.1016/j.jip.2021.107639
  21. Joe, H., Zhu, R., 2005. Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution. Biometrical Journal, 47 (2): 219–229. https://doi.org/10.1002/bimj.200410102
  22. Kijpornyongpan, T., Aime, M.C., 2021. Comparative transcriptomics reveal different mechanisms for hyphal growth across four plant-associated dimorphic fungi. Fungal Genetics and Biology, 152: 103565. https://doi.org/10.1016/j.fgb.2021.103565
  23. Kirisits, T., 2004. Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.C., Evans, H.F., (eds). Bark and wood boring insects in living trees in Europe, a synthesis. Dordrecht: Springer, 2004, p. 181–236.
  24. Kolařík, M., Stodůlková, E., Kajzrová, S., Semerád, J., Hubert, J., Kuzma, M., Šulc, M., Císařová, I., Jašica, A., Wennrich, J.P., Hulcr, J., Flieger, M., 2025. Secondary metabolites and their impact on symbiotic interactions in the ambrosia fungus Geosmithia eupagioceri. Fungal Ecology, 74: 101414. https://doi.org/10.1016/j.funeco.2025.101414
  25. Kovács, R., Jakab, Á., 2025. The effects of tyrosol on yeasts: an overview of current knowledge. Applied Microbiology and Biotechnology, 109: 201. https://doi.org/10.1007/s00253-025-13595-y
  26. Krokene, P., 2015. Conifer defense and resistance to bark beetles. In Vega, F.E., Hofstetter, R.W. (eds). Bark beetles: biology and ecology of native and invasive species. Academic Press, p. 177‒207. https://doi.org/10.1016/B978-0-12-417156-5.00005-8
  27. Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. ImerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82 (13): 1–26. https://doi.org/10.18637/jss.v082.i13
  28. Lal, A., John, F., Selvi, C.S.S., Revathi, M., 2019. Preparation and comparison of low cost media for fungus growth. FoodSci: Indian Journal of Research in Food Science and Nutrition, 6 (1): 8–12. https://doi.org/10.15613/fijrfn/2019/v6i1/184227
  29. Lenth, R.V., 2016. Least-squares means: The R package ls-means. Journal of Statistical Software, 69 (1): 1–33. https://doi.org/10.18637/jss.v069.i01
  30. Lenth, R., 2023. emmeans: Estimated marginal means, aka least-squares means (R package version 1.8.4-1).
  31. Lilly, V.G., Barnett, H.L., 1947. The influence of pH and certain growth factors on mycelial growth and perithecial formation by Sordaria fimicola. American Journal of Botany, 34 (3): 131‒138. https://doi.org/10.1002/j.1537-2197.1947.tb12968.x
  32. Linnakoski, R., De Beer, Z.W., Ahtiainen, J., Sidorov, E., Niemelä, P., Pappinen, A., Wingfield, M.J., 2010. Ophiostoma spp. associated with pine- and spruce-infesting bark beetles in Finland and Russia. Persoonia, 25: 72–93. https://doi.org/10.3767/003158510X550845
  33. Linnakoski, R., Jankowiak, R., Villari, C., Kirisits, T., Solheim, H., De Beer, Z.W., Wingfield, M.J., 2016. The Ophiostoma clavatum species complex: a newly defined group in the Ophiostomatales including three novel taxa. Antonie van Leeuwenhoek, 109: 987–1018. https://doi.org/10.1007/s10482-016-0700-y
  34. Lieutier, F., Yart, A., Salle, A., 2009. Stimulation of tree defenses by ophiostomatoid fungi can explain attack success of bark beetles on conifers. Annals of Forest Science, 66 (8): 801. https://doi.org/10.1051/forest/2009066
  35. Liu, X.W., Wang, H.M., Lu, Q., Decock, C., Li, Y.X., Zhang, X.Y., 2017. Taxonomy and pathogenicity of Leptographium species associated with Ips subelongatus infestations of Larix spp. in northern China, including two new species. Mycological Progress, 16: 1–13. https://doi.org/10.1007/s11557-016-1245-1
  36. Márton, R., Nagy, B., Molnár, M. 2023. Biofilm development of Candida boidinii and the effect of tyrosol on biofilm formation. Biotechnology Letters, 45: 1541–1554. https://doi.org/10.1007/s10529-023-03432-5
  37. Miyashira, C.H., Tanigushi, D.G., Gugliotta, A.M., Santos, D.Y.A.C., 2010. Comparison of radial growth rate of the mutualistic fungus of Atta sexdens rubropilosa forel in two culture media. Brazilian Journal of Microbiology, 41 (2): 506–511. https://doi.org/10.1590/S1517-838220100002000035
  38. McCullagh, P., Nelder, J.A., 1989. Generalized linear models. New York: Routledge. 532 p.
  39. Nazemi, L., Kordbacheh, P., Daei Ghazvini, R., Moazeni, M., Akbari Dana, M., Rezaie, S., 2015. Effects of thia-mine on growth, aflatoxin production, and aflr gene expression in A. parasiticus. Current Medical Mycology, 1 (1): 26–34. https://doi.org/10.18869/acadpub.cmm.1.1.26
  40. Nussbaum, N., Von Wyl, T., Gandia, A., Romanens, E., Rühs, P.A., Fischer, P., 2023. Impact of malt concentration in solid substrate on mycelial growth and network connectivity in Ganoderma species. Scientific Reports, 13: 21051. https://doi.org/10.1038/s41598-023-48203-4
  41. O’Donnell, K., Cigelnik, E., 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7 (1): 103‒116. https://doi.org/10.1006/mpev.1996.0376
  42. Pastirčáková, K., Adamčíková, K., Pastirčák, M., Zach, P., Galko, J., Kováč, M., Laco, J., 2018. Two blue-stain fungi colonizing Scots pine (Pinus sylvestris) trees infested by bark beetles in Slovakia, Central Europe. Biologia, 73: 1053–1066. https://doi.org/10.2478/s11756-018-0114-6
  43. Pfeffer, A., 1995. Zentral- und Westpaläarktische Borkenund Kernkäfer (Coleoptera: Scolytidae, Platypodidae). Basel: Pro Entomologia, c/o Naturhistorisches Museum, Basel. 310 p.
  44. Pinheiro, J., Bates, D., 2000. Mixed-effects models in S and S-PLUS. New York: Springer Science & Business Media. 528 p.
  45. R Core team, 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  46. Repe, A., Kirisits, T., Piškur, B., De Groot, M., Kump, B., Jurc, M., 2013. Ophiostomatoid fungi associated with three spruce-infesting bark beetles in Slovenia. Annals of Forest Science, 70 (7): 717–728. https://doi.org/10.1007/s13595-013-0311-y
  47. Rodrigues, C.F., Černáková, L., 2020. Farnesol and tyrosol: secondary metabolites with a crucial quorum-sensing role in Candida biofilm development. Genes, 11 (4): 444. https://doi.org/10.3390/genes11040444
  48. Seifert, K.A., Webber, J.F., Wingfield, M.J., 1993. Methods for studying species of Ophiostoma and Ceratocystis. In Wingfield, M.J., Seifert, K.A., Webber, J.F. (eds), Ceratocystis and Ophiostoma: Taxonomy, ecology, and pathogenicity. St. Paul: The American Phytopathological Society Press, p. 255–259.
  49. Sharma, G., Pandey, R.R., 2010. Influence of culture media on growth, colony character and sporulation of fungi isolated from decaying vegetable wastes. Journal of Yeast and Fungal Research, 1 (8): 157‒164.
  50. Singh, J.K., Shahdeo, S.P., Lal, B.B., Prasad, M., 1980. Effect of vitamins on growth and sporulation of Alternaria alternata (Fr.) Keissler. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abteilung: Mikrobiologie der Landwirtschaft, der Technologie und des Umweltschutzes, 135 (3): 234–239. https://doi.org/10.1016/s0323-6056(80)80029-2
  51. Six, D.L., 2012. Ecological and evolutionary determinants of bark beetle–fungus symbioses. Insects, 3 (1): 339–366. https://doi.org/10.3390/insects3010339
  52. Six, D.L., Wingfield, M.J., 2011. The role of phytopathogenicity in bark beetle–fungus symbioses: A challenge to the classic paradigm. Annual Review of Entomology, 56: 255–272. https://doi.org/10.1146/annurev-ento-120709-144839
  53. Song, X., Tie, Y., Wang, Z., Kong, L., Liu, H., Lu, Q., 2024. Three ophiostomatalean fungi associated with bark beetles from Pinus thunbergii infested by Bursaphelenchus xylophilus in Laoshan Mountain (Shandong, China). Forests, 15: 1990. https://doi.org/10.3390/f15111990
  54. Trollip, C., Carnegie, A.J., Dinh, Q., Kaur, J., Smith, D., Mann, R., Rodoni, B., Edwards, J., 2021. Ophiostomatoid fungi associated with pine bark beetles and infested pines in south eastern Australia, including Graphilbum ipis-grandicollis sp. nov. IMA Fungus, 12 (1): 24. https://doi.org/10.1186/s43008-021-00076-w
  55. Wang, W., Liang, L., Wang, H., Decock, C., Lu, Q., 2024a. Ophiostomatoid fungi associated with Ips bark beetles in China. Fungal Diversity, 129: 283–364. https://doi.org/10.1007/s13225-024-00546-7
  56. Wang, Z., Liu, C., Song, X., Tie, Y., Wang, H., Liu, H., Lu, Q., 2024b. Ophiostomatalean fungi associated with Polygraphus bark beetles in the Qinghai-Tibet Plateau, China. MycoKeys, 110: 93–115. https://doi.org/10.3897/mycokeys.110.135538
  57. Wang, Z., Liu, C., Tie, Y., Song, X., Wang, H., Lu, Q., 2025a. Ophiostomatalean fungi (Ascomycota, Ophiostomatales) associated with three beetles from Pinus sylvestris var. mongolica in Heilongjiang, China. Journal of Fungi, 11: 27. https://doi.org/10.3390/jof11010027
  58. Wang, H., Wang, Z., Dou, G., Lyu, Q., 2025b. Functional features of the associated fungi of bark beetles and the prospect of management of the synergetic infection of insect pests and pathogens. Tree Health, 2 (1): 7–20. Wang, H.M., Lun, Y.Y., Lu, Q., Liu, H.X., Decock, C.,
  59. Zhang, X.Y., 2018. Ophiostomatoid fungi associated with pines infected by Bursaphelenchus xylophilus and Monochamus alternatus in China, including three new species. MycoKeys, 39: 1–27. https://doi.org/10.3897/mycokeys.39.27014
  60. White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds). PCR protocols: a guide to methods and applications. New York: Academic Press, p. 315‒322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  61. Wickham, H., 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. 260 p. https://doi.org/10.1007/978-3-319-24277-4
  62. Yamaoka, Y., 2017. Taxonomy and pathogenicity of ophiostomatoid fungi associated with bark beetles infesting conifers in Japan, with special reference to those related to subalpine conifers. Mycoscience, 58 (3): 221–235. https://doi.org/10.1016/j.myc.2017.03.001
  63. Yousef, S.A.M., El-Metwally, M.M., El-Ghareeb, N.R., 2017. Impact of antioxidants and micronutrients as fungicides alternatives in improvement of antagonism of Trichoderma spp. against Sclerotinia sclerotiorum. Journal of Plant Pathology, 99 (1): 69–75.
  64. Yun, Y.H., Hyun, M.W., Suh, D.Y., Kim, S.H., 2009. Characterization of a sapstaining fungus, Ophiostoma floccosum, isolated from the sapwood of Pinus thunbergii in Korea. Mycobiology, 37 (1): 5–9. https://doi.org/10.4489/MYCO.2009.37.1.005
  65. Zhang, Z., Schwartz, S., Wagner, L., Miller, W., 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7 (1‒2): 203–214. https://doi.org/10.1089/10665270050081478
DOI: https://doi.org/10.2478/foecol-2026-0001 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 1 - 15
Submitted on: Sep 17, 2025
|
Accepted on: Dec 3, 2025
|
Published on: Jan 26, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Michaela Strmisková, Miriam Kádasi Horáková, Marek Barta, Marek Svitok, Katarína Pastirčáková, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.