Have a personal or library account? Click to login
Seasonal flight activity and the length of the generation period of selected Noctuidae (Lepidoptera) –extent and causes of variation Cover

Seasonal flight activity and the length of the generation period of selected Noctuidae (Lepidoptera) –extent and causes of variation

Open Access
|Jul 2025

References

  1. Altermatt, F., 2012. Temperature-related shifts in butterfly phenology depend on the habitat. Global Change Biology, 18: 2429–2438. https://doi.org/10.1111/j.1365-2486.2012.02727.x
  2. Ayre, G.L., Lamb, R.J., 1990. Life histories, flight patterns, and relative abundance of 9 cutworms (Lepidoptera, Noctuidae) in Manitoba. Canadian Entomologist, 122: 1059–1070.
  3. Ayres, M.P., Scriber, J.M., 1994. Local adaptation to regional climates in Papilio canadensis (Lepidoptera, Papilionidae). Ecological Monographs, 64: 465–482. https://doi.org/10.2307/2937146
  4. Bardoloi, S., Hazarika, L.K., 1994. Body temperature and thermoregulation of Antherea assama larvae. Entomologia Experimentalis et Applicata, 72: 207–217. https://doi.org/10.1111/j.1570-7458.1994.tb01820.x
  5. Beck, S.D., 1968. Insect photoperiodism. New York and London: Academic Press. 288 p.
  6. Bryant, S.R., Bale, J.S., Thomas, C.D., 1998. Modification of the triangle method of degree-day accumulation to allow for behavioural thermoregulation in insects. Journal of Applied Ecology, 35: 921–927.
  7. Bues, R., Poitout, S., 1980. Study of larval and pupal development of Phlogophora meticulosa L. (Lep. Noctuidae) under different temperatures and photoperiods. Acta Oecologica-Oecologia Applicata, 1: 127–138.
  8. Danilevskii, A.S., 1965. Photoperiodism and seasonal development of insects. Edinburgh and London: Oliver & Boyd. 283 p.
  9. Degut, A., Fischer, K., Quque, M., Criscuolo, F., Michalik, P., Beaulieu, M., 2022. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. Journal of Experimental Biology, 225: jeb243724. https://doi.org/10.1242/jeb.243724
  10. Devetak, M., Bohinc, T., Kac, K., Trdan S., 2014. Seasonal dynamics of the cabbage armyworm (Mamestra brassicae [L.]) and the bright-line brown-eyes moth (Mamestra oleracea [L.]) in Slovenia. Journal of Horticultural Science, 41: 80–88. DOI: 10.17221/209/2013-HORTSCI
  11. Duraimurugan, P., 2018. Effect of weather parameters on the seasonal dynamics of tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae) in castor in Telangana State. Journal of Agrometeorology, 20: 139–143. https://doi.org/10.54386/jam.v20i2.526
  12. Fazekas, J., Kadar, F., Sarospataki, M., Lövei, G.L., 1997. Seasonal activity, age structure and egg production of the ground beetle Anisodactylus signatus (Caleoptera: Carabidae) in Hungary. European Journal of Entomology, 94: 473–484.
  13. Frears, S.L., Chown, S.L., Webb, P.I., 1997. Behavioural thermoregulation in the mopane worm (Lepidoptera). Journal of Thermal Biology, 22: 325–330. https://doi.org/10.1016/S0306-4565(97)00029-6
  14. Guo, J.L., Fu, X.W., Zhao, S.Y., Shen, X.J., Wyckhuys, K.A.G., Wu, K.M., 2020. Long-term shifts in abundance of (migratory) crop-feeding and beneficial insect species in northeastern Asia. Journal of Agrometeorology, 93: 583–594. https://doi.org/10.1007/s10340-019-01191-9
  15. Hill, G.M., Kawahara, A.Y., Daniels, J.C., Bateman, C.C., Scheffers, B.R., 2021. Climate change effects on animal ecology: butterflies and moths as a case study. Biological Reviews, 96: 2113–2126. https://doi.org/10.1111/brv.12746
  16. Honek, A., 1996. The relationship between thermal constants for insect development: a verification. Acta Societatis Zoologicae Bohemicae, 60: 115–152.
  17. Honek, A., Kocourek, F., 1990. Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Abteilung für Systematik, Ökologie und Geographie der Tiere, 117: 401–439.
  18. Honek, A., Martinkova, Z., Lukas, J., Dixon, A.F.G., 2014. Plasticity of the thermal requirements of exotherms and adaptation to environmental conditions. Ecology and Evolution, 4: 3103–3112. https://doi.org/10.1002/ece3.1170
  19. Honek, A., Novak, I., Martinkova, Z., Saska, P., Kulfan, J., Holecova, M., Jauschova, T., Zach, P., 2023. Trophic ecology drives annual variation in abundance of aphidophagous (Coccinellidae, Coleoptera and Chrysopidae, Neuroptera) and phytophagous (Noctuidae, Lepidoptera) insects: evidence from light traps. Annals of the Entomo-logical Society of America, 116: 125–140. https://doi.org/10.1093/aesa/saad002
  20. Hrubesova, V., Sefrova, H., Lastuvka, Z., 2023. The importance of local faunal research for plant protection: an example from an agricultural landscape in central Europe. Plant Protection Science, 59: 348–355. DOI: 10.17221/33/2023-PPS
  21. Jarosik, V., Honek, A., Magarey, R.D., Skuhrovec, J., 2011. Developmental database for phenology models: related insect and mite species have similar thermal requirements. Journal of Economic Entomology, 104: 1870–1876. https://doi.org/10.1603/EC11247
  22. Keszthelyi, S., Nowinszky, L., Szeoke, K., 2016. Different catching series from light and pheromone trapping of Helicoverpa armigera (Lepidoptera: Noctuidae). Biologia, 7: 818–823. https://doi.org/10.1515/biolog-2016-0094
  23. Kitajima, H., Sakata, H., Kunitomo, S., Kawashima, Y.,2016. Effects of temperature on the development of Diomea cremata (Lepidoptera, Noctuidae). Japanese Journal of Applied Entomology and Zoology, 60: 205–209.
  24. Koch, M., 1988. Wir bestimmen Schmetterlinge [Identifying butterflies]. Leipzig and Radebeul: Neumann Verlag. 792 p. (In German).
  25. Larsen, E.A., Belitz, M.W., Guralnick, R.P., Ries, L., 2022. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Scientific Reports, 12: 1337.0. https://doi.org/10.1038/s41598-022-16104-7
  26. Lee, K.P., Roh, C., 2010. Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomologia Experimentalis et Applicata, 136: 151–163. https://doi.org/10.1111/j.1570-7458.2010.01018.x
  27. Lees, A.D., 1955. The physiology of diapause in arthropods. Cambridge Monographs in Experimental Biology, No. 4. Cambridge University Press. 151 p.
  28. May, M.L., 1979. Insect thermoregulation. Annual Review of Entomology, 24: 313–349.
  29. Merckx, T., Slade, E.M., 2014. Macro-moth families differ in their attraction to light: implications for light trap monitoring programmes. Insect Conservation and Diversity, 7: 453–461. https://doi.org/10.1111/icad.12068
  30. Meszaros, Z., Madaras, K.M., Herczig, B., 1979. Population dynamics of noctuids in Hungary. I. Scotia segetum Schiff., S. exclamationis L., Amathes c-nigrum L. Acta Zoologica Academiae Scientiarum Hungaricae, 14: 493–501.
  31. Moon, H.C., Choi, M.K., Jang, S.J., Jang, H.L., Kim, J.H., Chon, H.G., 2022. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Korean Journal of Applied Entomology, 61: 349–356.
  32. Moore, M.E., Alston, M.A., Kingsolver, J.G., 2023. Behavioral thermoregulation of caterpillars is altered by temperature, but not parasitism: an empirical field study. Ecosphere, 14: e4578. DOI: 10.1002/ecs2.4578
  33. Novák, I., 1983. An efficient light-trap for catching insects. Acta Entomologica Bohemoslovaca, 80: 29–34.
  34. Nowinszky, L. (ed.), 2008. Light trapping and the moon. Szombathely: Savaria University Press. 170 p.
  35. Raimondo, S., Strazanac, J.S., Butler, L., 2004. Comparison of sampling techniques used in studying Lepidoptera population dynamics. Environmental Entomology, 33: 418–425. https://doi.org/10.1603/0046-225X-33.2.418
  36. Régnier, B., Legrand, J., Rebaudo, F., 2022. Modeling temperature-dependent development rate in insects and implications of experimental design. Environmental Entomology, 51: 132–144.
  37. Saunders, D., 2020. Insect photoperiodism: Seasonal development on a revolving planet. European Journal of Entomology, 117: 328–342. DOI: 10.14411/eje.2020.038
  38. Sharma, S., Kooner, R., Sandhu, S.S., Arora, R., Kaur, T., Kaur, S., 2017. Seasonal dynamics of insect pests of sugar beet under subtropical conditions. Journal of Agro-meteorology, 19: 81–83.
  39. Spitzer, K., Lepš, J., 1988. Determinants in temporal variation in moth abundance. Oikos, 53: 31–36. https://doi.org/10.2307/356565
  40. Spitzer, K., Rejmanek, M., Soldán, T., 1984. The fecundity and long term variability in abundance of noctuid moths (Lepidoptera, Noctuidae). Oecologia, 62: 91–93.
  41. Spuler, A., 1908. Die Schmetterlinge Europas [Butterflies of Europa]. Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung (E. Nägele). 385 p. (In German).
  42. SYSTAT SOFTWARE Inc, 2006. SigmaStat 3.5 for Windows. Point Richmond, CA: Systat Software Inc. 844 p.
  43. Tauber, M.J., Tauber, C.A., Masaki, S., 1986. Seasonal adaptations of insects. Oxford, New York: Oxford University Press. 411 p.
  44. Taylor, L.R., French, R.S., 1974. Effect of light trap design and illumination on samples of moths in an English woodland. Bulletin of Entomological Research, 63: 583–594.
  45. Trudgill, D.L., Honek, A., Li, D., Van Straalen, N.M., 2005. Thermal time –concepts and utility. Annals of Applied Biology, 146: 1–14. https://doi.org/10.1111/j.1744-7348.2005.04088.x
  46. Tsutsui, H., Hayakawa, H., 1991. Forecasting adult emergence and abundance of spotted cutworm, Xestia c-nigrum in the Tokachi District of Hokkaido. Japanese Journal of Applied Entomology and Zoology, 35: 189–195.
  47. Wigglesworth, V.B., 1939. The principles of insect physiology. New York: E. P. Dutton Inc. 434 p.
  48. Williams, C.B., 1939. An analysis of four years captures of insects in a light trap. Part I. General survey; sex proportion; phenology; and time of flight. Transactions of the Royal Entomological Society of London, 89: 79–131. https://doi.org/10.1111/j.1365-2311.1939.tb00738.x
  49. Wölfling, M., Becker, M.C., Uhl, B., Traub, A., Fiedler, K., 2016. How differences in the setting behaviour of moths (Lepidoptera) may contribute to sampling bias when using automated light traps. European Journal of Entomology, 113: 502–506. DOI: 10.14411/eje.2016.066
DOI: https://doi.org/10.2478/foecol-2025-0018 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 189 - 201
Submitted on: Jan 23, 2025
Accepted on: Apr 22, 2025
Published on: Jul 23, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Alois Honěk, Zdenka Martinková, Ivo Novák, Terézia Jauschová, Lenka Sarvašová, Miroslav Saniga, Milada Holecová, Ján Kulfan, Peter Zach, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.