References
- A
ltermatt , F., 2012. Temperature-related shifts in butterfly phenology depend on the habitat. Global Change Biology, 18: 2429–2438. https://doi.org/10.1111/j.1365-2486.2012.02727.x - A
yre , G.L., Lamb , R.J., 1990. Life histories, flight patterns, and relative abundance of 9 cutworms (Lepidoptera, Noctuidae) in Manitoba. Canadian Entomologist, 122: 1059–1070. - A
yres , M.P., Scriber , J.M., 1994. Local adaptation to regional climates in Papilio canadensis (Lepidoptera, Papilionidae). Ecological Monographs, 64: 465–482. https://doi.org/10.2307/2937146 - B
ardoloi , S., Hazarika , L.K., 1994. Body temperature and thermoregulation of Antherea assama larvae. Entomologia Experimentalis et Applicata, 72: 207–217. https://doi.org/10.1111/j.1570-7458.1994.tb01820.x - B
eck , S.D., 1968. Insect photoperiodism. New York and London: Academic Press. 288 p. - B
ryant , S.R., Bale , J.S., Thomas , C.D., 1998. Modification of the triangle method of degree-day accumulation to allow for behavioural thermoregulation in insects. Journal of Applied Ecology, 35: 921–927. - B
ues , R., Poitout , S., 1980. Study of larval and pupal development of Phlogophora meticulosa L. (Lep. Noctuidae) under different temperatures and photoperiods. Acta Oecologica-Oecologia Applicata, 1: 127–138. - D
anilevskii , A.S., 1965. Photoperiodism and seasonal development of insects. Edinburgh and London: Oliver & Boyd. 283 p. - D
egut , A., Fischer , K., Quque , M., Criscuolo , F., Michalik , P., Beaulieu , M., 2022. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. Journal of Experimental Biology, 225: jeb243724. https://doi.org/10.1242/jeb.243724 - D
evetak , M., Bohinc , T., Kac , K., Trdan S., 2014. Seasonal dynamics of the cabbage armyworm (Mamestra brassicae [L.]) and the bright-line brown-eyes moth (Mamestra oleracea [L.]) in Slovenia. Journal of Horticultural Science, 41: 80–88. DOI: 10.17221/209/2013-HORTSCI - D
uraimurugan , P., 2018. Effect of weather parameters on the seasonal dynamics of tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae) in castor in Telangana State. Journal of Agrometeorology, 20: 139–143. https://doi.org/10.54386/jam.v20i2.526 - F
azekas , J., Kadar , F., Sarospataki , M., Lövei , G.L., 1997. Seasonal activity, age structure and egg production of the ground beetle Anisodactylus signatus (Caleoptera: Carabidae) in Hungary. European Journal of Entomology, 94: 473–484. - F
rears , S.L., Chown , S.L., Webb , P.I., 1997. Behavioural thermoregulation in the mopane worm (Lepidoptera). Journal of Thermal Biology, 22: 325–330. https://doi.org/10.1016/S0306-4565(97)00029-6 - G
uo , J.L., Fu , X.W., Zhao , S.Y., Shen , X.J., Wyckhuys , K.A.G., Wu , K.M., 2020. Long-term shifts in abundance of (migratory) crop-feeding and beneficial insect species in northeastern Asia. Journal of Agrometeorology, 93: 583–594. https://doi.org/10.1007/s10340-019-01191-9 - H
ill , G.M., Kawahara , A.Y., Daniels , J.C., Bateman , C.C., Scheffers , B.R., 2021. Climate change effects on animal ecology: butterflies and moths as a case study. Biological Reviews, 96: 2113–2126. https://doi.org/10.1111/brv.12746 - H
onek , A., 1996. The relationship between thermal constants for insect development: a verification. Acta Societatis Zoologicae Bohemicae, 60: 115–152. - H
onek , A., Kocourek , F., 1990. Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Abteilung für Systematik, Ökologie und Geographie der Tiere, 117: 401–439. - H
onek , A., Martinkova , Z., Lukas , J., Dixon , A.F.G., 2014. Plasticity of the thermal requirements of exotherms and adaptation to environmental conditions. Ecology and Evolution, 4: 3103–3112. https://doi.org/10.1002/ece3.1170 - H
onek , A., Novak , I., Martinkova , Z., Saska , P., Kulfan , J., Holecova , M., Jauschova , T., Zach , P., 2023. Trophic ecology drives annual variation in abundance of aphidophagous (Coccinellidae, Coleoptera and Chrysopidae, Neuroptera) and phytophagous (Noctuidae, Lepidoptera) insects: evidence from light traps. Annals of the Entomo-logical Society of America, 116: 125–140. https://doi.org/10.1093/aesa/saad002 - H
rubesova , V., Sefrova , H., Lastuvka , Z., 2023. The importance of local faunal research for plant protection: an example from an agricultural landscape in central Europe. Plant Protection Science, 59: 348–355. DOI: 10.17221/33/2023-PPS - J
arosik , V., Honek , A., Magarey , R.D., Skuhrovec , J., 2011. Developmental database for phenology models: related insect and mite species have similar thermal requirements. Journal of Economic Entomology, 104: 1870–1876. https://doi.org/10.1603/EC11247 - K
eszthelyi , S., Nowinszky , L., Szeoke , K., 2016. Different catching series from light and pheromone trapping of Helicoverpa armigera (Lepidoptera: Noctuidae). Biologia, 7: 818–823. https://doi.org/10.1515/biolog-2016-0094 - K
itajima , H., Sakata , H., Kunitomo , S., Kawashima , Y.,2016. Effects of temperature on the development of Diomea cremata (Lepidoptera, Noctuidae). Japanese Journal of Applied Entomology and Zoology, 60: 205–209. - K
och , M., 1988. Wir bestimmen Schmetterlinge [Identifying butterflies]. Leipzig and Radebeul: Neumann Verlag. 792 p. (In German). - L
arsen , E.A., Belitz , M.W., Guralnick , R.P., Ries , L., 2022. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Scientific Reports, 12: 1337.0. https://doi.org/10.1038/s41598-022-16104-7 - L
ee , K.P., Roh , C., 2010. Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomologia Experimentalis et Applicata, 136: 151–163. https://doi.org/10.1111/j.1570-7458.2010.01018.x - L
ees , A.D., 1955. The physiology of diapause in arthropods. Cambridge Monographs in Experimental Biology, No. 4. Cambridge University Press. 151 p. - M
ay , M.L., 1979. Insect thermoregulation. Annual Review of Entomology, 24: 313–349. - M
erckx , T., Slade , E.M., 2014. Macro-moth families differ in their attraction to light: implications for light trap monitoring programmes. Insect Conservation and Diversity, 7: 453–461. https://doi.org/10.1111/icad.12068 - M
eszaros , Z., Madaras , K.M., Herczig , B., 1979. Population dynamics of noctuids in Hungary. I. Scotia segetum Schiff., S. exclamationis L., Amathes c-nigrum L. Acta Zoologica Academiae Scientiarum Hungaricae, 14: 493–501. - M
oon , H.C., Choi , M.K., Jang , S.J., Jang , H.L., Kim , J.H., Chon , H.G., 2022. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Korean Journal of Applied Entomology, 61: 349–356. - M
oore , M.E., Alston , M.A., Kingsolver , J.G., 2023. Behavioral thermoregulation of caterpillars is altered by temperature, but not parasitism: an empirical field study. Ecosphere, 14: e4578. DOI: 10.1002/ecs2.4578 - N
ovák , I., 1983. An efficient light-trap for catching insects. Acta Entomologica Bohemoslovaca, 80: 29–34. - N
owinszky , L. (ed.), 2008. Light trapping and the moon. Szombathely: Savaria University Press. 170 p. - R
aimondo , S., Strazanac , J.S., Butler , L., 2004. Comparison of sampling techniques used in studying Lepidoptera population dynamics. Environmental Entomology, 33: 418–425. https://doi.org/10.1603/0046-225X-33.2.418 - R
égnier , B., Legrand , J., Rebaudo , F., 2022. Modeling temperature-dependent development rate in insects and implications of experimental design. Environmental Entomology, 51: 132–144. - S
aunders , D., 2020. Insect photoperiodism: Seasonal development on a revolving planet. European Journal of Entomology, 117: 328–342. DOI: 10.14411/eje.2020.038 - S
harma , S., Kooner , R., Sandhu , S.S., Arora , R., Kaur , T., Kaur , S., 2017. Seasonal dynamics of insect pests of sugar beet under subtropical conditions. Journal of Agro-meteorology, 19: 81–83. - S
pitzer , K., Lepš , J., 1988. Determinants in temporal variation in moth abundance. Oikos, 53: 31–36. https://doi.org/10.2307/356565 - S
pitzer , K., Rejmanek , M., Soldán , T., 1984. The fecundity and long term variability in abundance of noctuid moths (Lepidoptera, Noctuidae). Oecologia, 62: 91–93. - S
puler , A., 1908. Die Schmetterlinge Europas [Butterflies of Europa]. Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung (E. Nägele). 385 p. (In German). - SYSTAT SOFTWARE Inc, 2006. SigmaStat 3.5 for Windows. Point Richmond, CA: Systat Software Inc. 844 p.
- T
auber , M.J., Tauber , C.A., Masaki , S., 1986. Seasonal adaptations of insects. Oxford, New York: Oxford University Press. 411 p. - T
aylor , L.R., French , R.S., 1974. Effect of light trap design and illumination on samples of moths in an English woodland. Bulletin of Entomological Research, 63: 583–594. - T
rudgill , D.L., Honek , A., Li , D., Van Straalen , N.M., 2005. Thermal time –concepts and utility. Annals of Applied Biology, 146: 1–14. https://doi.org/10.1111/j.1744-7348.2005.04088.x - T
sutsui , H., Hayakawa , H., 1991. Forecasting adult emergence and abundance of spotted cutworm, Xestia c-nigrum in the Tokachi District of Hokkaido. Japanese Journal of Applied Entomology and Zoology, 35: 189–195. - W
igglesworth , V.B., 1939. The principles of insect physiology. New York: E. P. Dutton Inc. 434 p. - W
illiams , C.B., 1939. An analysis of four years captures of insects in a light trap. Part I. General survey; sex proportion; phenology; and time of flight. Transactions of the Royal Entomological Society of London, 89: 79–131. https://doi.org/10.1111/j.1365-2311.1939.tb00738.x - W
ölfling , M., Becker , M.C., Uhl , B., Traub , A., Fiedler , K., 2016. How differences in the setting behaviour of moths (Lepidoptera) may contribute to sampling bias when using automated light traps. European Journal of Entomology, 113: 502–506. DOI: 10.14411/eje.2016.066