Have a personal or library account? Click to login
Soil mycobiome structure across central and peripherial zones in a pecan nut agroecosystem [Carya illinoinensis (Wangenh.) K. Koch] Cover

Soil mycobiome structure across central and peripherial zones in a pecan nut agroecosystem [Carya illinoinensis (Wangenh.) K. Koch]

Open Access
|Jul 2025

References

  1. Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R.H., Kõljalg, U., 2023. UNITE general FASTA release for eukaryotes. Version 18.07.2023. UNITE Community. https://doi.org/10.15156/BIO/2938069
  2. Aguiar, M., Conway, A.J., Bell, J.K., Stewart, K.J., 2023. Agroecosystem edge effects on vegetation, soil properties, and the soil microbial community in the Canadian prairie. Plos ONE, 18 (4): e0283832. https://doi.org/10.1371/journal.pone.0283832
  3. Ahmadpour, S.A., Mehrabi-Koushki, M., Farokhinejad, R., Asgari, B., 2022. New species of the family Didymellaceae in Iran. Mycological Progress, 21 (2): 28. https://doi.org/10.1007/s11557-022-01800-5
  4. Alvidrez-Villarreal, R., Hernández-Castillo, F.D., Garcia-Martínez, O., Mendoza-Villarreal, R., Rodríguez-Herrera, R., Aguilar, C.N., 2012. Isolation and pathogenicity of fungi associated to ambrosia borer (Euplatypus segnis) found injuring pecan (Carya illinoen- sis) wood. Agricultural Sciences, 3: 405–416. DOI:10.4236/as.2012.33048
  5. Andersen, K.S., Kirkegaard, R.H., Karst, S.M., Albertsen, M., 2018. ampvis2: an R package to analyse and visualize 16S rRNA amplicon data. BioRxiv, 299537. https://doi.org/10.1101/299537
  6. Andrades, M., 2012. Prácticas de edafología y climatología [Soil science and climatology]. 2nd ed. Universidad de la Rioja, Servicio de publicaciones. [cit. 2024-12-03]. https://www.agapea.com/M-Andrades-Rodriguez/Practicas-de-Edafologia-y-Climatologia-9788488713278-i.htm. (In Spanish).
  7. Anslan, S., Bahram, M., Hiiesalu, I., Tedersoo, L., 2017. PipeCraft: flexible open‐source toolkit for bioinformatics analysis of custom high‐throughput amplicon sequencing data. Molecular Ecology Resources, 17 (6): e234-e240. https://doi.org/10.1111/1755-0998.12692
  8. Bennett, A. E., Groten, K., 2022. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annual Review of Plant Biology, 73 (1): 649–672. https://doi.org/10.1146/annurev-arplant-102820-124504
  9. Blincoe, K., Harrison, F., Damian, D., 2015. Ecosystems in GitHub and a method for ecosystem identification using reference coupling. In 2015 IEEE/ACM 12th working conference on mining software repositories. Florence, Italy, 16-17 May 2015. Piscataway: IEEE, p. 202–211. DOI: 10.1109/MSR.2015.26
  10. Bremner, J.M., 1965. Total nitrogen. Methods of soil analysis: part 2 Chemical and microbiological properties. Number 9 in Series Agronomy. Madison: American Society of Agronomy Inc., p. 1149–1178.
  11. Cabrera-Rodríguez, Nava-Reyna, E., Trejo-Calzada, R., García-De la Peña, C., Arreolavila, J.G., Collavino, M.M., Constante-García, V., 2020. Effect of organic and conventional systems used to grow pecan trees on diversity of soil microbiota. Diversity, 12 (11): 436. https://doi.org/10.3390/d12110436
  12. Casas , R., 2012. El suelo de cultivo y las condiciones climáticas [Crop soil and climatic conditions]. Madrid: Parainfo. 235 p. (In Spanish).
  13. Chen, T., Wang, S., Jiang, X., Huang, Y., Mo, M., Yu, Z., 2023. New species of Didymellaceae within aquatic plants from southwestern China. Journal of Fungi, 9 (7): 761. https://doi.org/10.3390/jof9070761
  14. Chimal-Sánchez, E., Senés-Guerrero, C., Varela, L., Montaño, N.M., García-Sánchez, R., Pacheco, A., Montaño-Arias, S.A., Camargo-Ricalde, S.L., 2020. Septoglomus mexicanum, a new species of arbuscular mycorrhizal fungi from semiarid regions in Mexico. Mycologia, 112 (1): 121–132. https://doi.org/10.1080/00275514.2019.1671147
  15. Colombo, R.P., Recchi, M., Silvani, V.A., Pérgola, M., Martínez, A., Godeas, A.M., 2018. Detection of arbuscular mycorrhizal fungi associated with pecan (Carya illinoinensis) trees by molecular and morphological approaches. MycoKeys, 42: 73–88. https://doi.org/10.3897/mycokeys.42.26118
  16. Delgado-Baquerizo, Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7 (1): 10541. https://doi.org/10.1038/ncomms10541
  17. Eslaminejad, P., Heydari, M., Kakhki, F.V., Mirab-Balou, M., Omidipour, R., Muñoz-Rojas, M., Lucas-Borja, M.E., 2020. Plant species and season influence soil physicochemical properties and microbial function in a semi-arid woodland ecosystem. Plant and Soil, 456: 43–59. https://doi.org/10.1007/s11104-020-04691-1
  18. Ginestet, C., 2011. ggplot2: elegant graphics for data analysis. Journal of the Royal Statistical Society Series A: Statistics in Society, 174 (1): 245–246. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
  19. Gkisakis, V., Volakakis, N., Kollaros, D., Bàrberi, P., Kabourakis, E.M., 2016. Soil arthropod community in the olive agroecosystem: determined by environment and farming practices in different management systems and agroecological zones. Agriculture, Ecosystems and Environment, 218: 178–189. https://doi.org/10.1016/j.agee.2015.11.026
  20. Gryzenhout, M., Khooa, B., Landman, L., 2016. First report of Fusarium boothii from pecan (Carya illinoinensis) and camel thorn (Vachellia erioloba) trees in South Africa. South African Journal of Botany, 105: 158–162.
  21. Guerrero-Galán, C., Calvo-Polanco, M., Zimmermann, S.D., 2019. Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. Mycorrhiza, 29: 291– 301. https://doi.org/10.1007/s00572-019-00894-2
  22. Huang, W., van Bodegom, P. M., Declerck, S., Heinonsalo, J., Cosme, M., Viskari, T., Soudzilovskaia, N. A., 2022. Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi. Communications Biology, 5 (1): 398. https://doi.org/10.1038/s42003-022-03341-9
  23. Hudson, O., Buchholz, M., Doyle, V., Sundue, M.A., 2019. Multilocus phylogeny of Acrospermaceae: new epibiotic species and placement of Gonatophragmium, Pseudovirgaria, and Phaeodactylium anamorphs. Mycologia, 111 (6): 1041–1055. https://doi.org/10.1080/00275514.2019.1668905
  24. INIFAP (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias), 2002. Tecnología de producción en nogal pecanero [Pecan nut production technology]. Ciudad de México: CELALA-CIRNOC-INI FAP. (In Spanish).
  25. Johnson, B.L., Haddad, N.M., 2011. Edge effects, not connectivity, determine the incidence and development of a foliar fungal plant disease. Ecology, 92 (8): 1551–1558. https://doi.org/10.1890/10-1072.1
  26. Keirnan, Tan, Y.P., Laurence, M.H., Mertin, A.A., Liew, E.C., Summerell, B.A., Shivas, R.G., 2021. Cryptic diversity found in Didymellaceae from Australian native legumes. MycoKeys, 78: 1–20. DOI: 10.3897/mycokeys.78.60063
  27. Kreitzman, M., 2020. Perennial agriculture: agronomy and environment in long-lived food systems. PhD thesis. University of British Columbia. 283 p.
  28. Larsson, E., Campo, E., Carbone, M., 2014. Hygrophorus exiguus, a new species in subgenus Colorati section Olivaceoumbrini, subsection Tephroleuci. Karstenia, 54 (2): 41–48.
  29. Legeay, M., Doncheva, N.T., Morris, J.H., Jensen, L.J., 2020. Visualize omics data on networks with Omics Visualizer, a Cytoscape App. F1000Research, 9: 157. https://doi.org/10.12688/f1000research.22280.2
  30. Luján Soto, R., Martínez-Mena, M., Cuéllar Padilla, M., De Vente, J., 2021. Restoring soil quality of woody agroecosystems in Mediterranean drylands through regenerative agriculture. Agriculture, Ecosystems and Environment, 306: 107191. https://doi.org/10.1016/j.agee.2020.107191
  31. Ma, Y., Dias, M.C., Freitas, H., 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11: 591911. https://doi.org/10.3389/fpls.2020.591911
  32. Ma, W-Y., Wu, Q.-S.,., Xu, Y.-J., Kuča, K., 2021. Exploring mycorrhizal fungi in walnuts with a focus on physiological roles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49 (2): 12363. https://doi.org/10.15835/nbha49212363
  33. Madriz-Valdovinos, Coronado, M.L., Raymundo, T., Gutiérrez, A., Flores, M. S., Esqueda, M. 2022. Pezizales (Ascomycota) associated with pine-oak forest in Yécora, Sonora, Mexico. Acta Botanica Mexicana, 129. https://doi.org/10.21829/abm129.2022.2083
  34. McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS ONE, 8 (4): e61217. https://doi.org/10.1371/journal.pone.0061217
  35. Medel, R., Castillo, R., Marmolejo, J., Baeza, Y., 2013. Análisis de la familia Pezizaceae (Pezizales: Ascomycota) en México [Analysis of the family Pezizaceae (Pezizales: Ascomycota) in Mexico]. Revista Mexicana de Biodiversidad, 84: S21-S38. https://doi.org/10.7550/rmb.31741. (In Spanish).
  36. Melo, C., Walker, C., Krüger, C., Borges, P.A., Luna, S., Mendonça, D., Machado, A.C., 2019. Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azo-rica on native forest of Azores. Annals of Microbiology, 69: 1309–1327. https://doi.org/10.1007/s13213-019-01535-x
  37. Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 2016. FUN-Guild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20: 241–248. https://doi.org/10.1016/j.funeco.2015.06.006
  38. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Oksanen, M.J., 2013. Package ‘vegan’. Community ecology package, version 2 (9), p. 1–295.
  39. Palmer, J.M., Lindner, D.L., Volk, T.J., 2008. Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin. Mycorrhiza, 19: 27–36. https://doi.org/10.1007/s00572-008-0200-7
  40. Poletto, T., Muniz, M.F.B., Fantinel, V.S., Harakava, R., Rolim, J.M., 2020. Characterization and pathogenicity of Fusarium oxysporum associated with Carya illinoinensis seedlings. Floresta e Ambiente, 27: e20171089. https://doi.org/10.1590/2179-8087.108917
  41. Porensky, L.M., Young, 2013. Edge‐effect interactions in fragmented and patchy landscapes. Conservation Biology, 27 (3): 509–519.
  42. Rivera-Urbalejo, Vazquez-Sandoval, D., Fernández-Vázquez, J.L., Rosete-Enríquez, M., Cesa-Luna, C., Morales-García, Y.E., Quintero-Hernández, V., 2021. Aportes y dificultades de la metagenómica de suelos y su impacto en la agricultura [Contributions and difficulties of soil metagenomics and its impact on agriculture]. Acta Biológica Colombiana, 26 (3): 449–461. https://doi.org/10.15446/abc.v26n3.85760. (In Spanish).
  43. Rodríguez, M.A., 1996. Prácticas de edafología y climatología [Practice of soil science and climatology]. Universidad de la Rioja. Servicio de publicaciones. 79 p. (In Spanish).
  44. Rudawska, M., Kujawska, M., Leski, T., Janowski, D., Karliński, L., Wilgan, R., 2019. Ectomycorrhizal community structure of the admixture tree species Betula pendula, Carpinus betulus, and Tilia cordata grown in bare-root forest nurseries. Forest Ecology and Management, 437: 113–125. https://doi.org/10.1016/j.foreco.2019.01.009
  45. Sánchez-Ledesma J., Garibay-Orijel, R., Guevara-Guerrero, G., Ávila-Rodríguez, V., Arreolavila, J.G., 2023. Macromicetos asociados con Carya illinoinensis en La Comarca Lagunera, México [Macromycetes associated with Carya illinoinensis in La Comarca Lagunera, Mexico]. Revista Mexicana de Biodiversidad, 94: e944074-e944074. https://doi.org/10.22201/ib.20078706e.2023.94.4074. (In Spanish).
  46. Schmidt, M., 2019. Fragmentation of landscapes: modelling ecosystem services of transition zones. PhD thesis. Universität Potsdam, Potsdam. https://doi.org/10.25932/publishup-44294
  47. Sharma, S., Singh, P., Chauhan, S., Choudhary, O.P., 2022. Landscape position and slope aspects impacts on soil organic carbon pool and biological indicators of a fragile ecosystem in high-altitude cold arid region. Journal of Soil Science and Plant Nutrition, 22 (2): 2612–2632. https://doi.org/10.1007/s42729-022-00831-x
  48. Shi, J.W., Lu, L.X., Shi, H.M., Ye, J.R., 2022. Effects of plant growth-promoting rhizobacteria on the growth and soil microbial community of Carya illinoinensis. Current Microbiology, 79 (11: 352.
  49. Talbot, J.M., Bruns, T.D., Smith, D.P., Branco, S., Glassman, S.I., Erlandson, S., Peay, K.G., 2014. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biology and Biochemistry, 57: 282–291. https://doi.org/10.1016/j.soilbio.2012.10.004
  50. Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Abarenkov, K., 2014. Global diversity and geography of soil fungi. Science, 346 (6213): 1256688. DOI: 10.1126/science.1256688
  51. Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science, 367 (6480): eaba1223. DOI: 10.1126/science.aba1223
  52. Viglizzo, E.F., Roberto, Z.E., Filippin, M.C., Pordomingo, A.J., 1995. Climate variability and agroecological change in the Central Pampas of Argentina. Agriculture, Ecosystems and Environment, 55 (1): 7–16. https://doi.org/10.1016/0167-8809(95)00608-U
  53. Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37 (1): 29–38.
  54. Wei, T., Simko, V.R., 2021. package “corrplot”: Visualization of a Correlation Matrix (Version 0.92). Package Corrplot for R Software.
  55. Wei, H., He, X., Riccardo, B., Yang, Y., Yuan, Z., 2021. Stagonosporopsis rhizophilae sp. nov. (Didymellaceae, Pleosporales), a new rhizospheric soil fungus associated with Populus deltoides Marsh. Phytotaxa, 491 (1): 23–34. https://doi.org/10.11646/phytotaxa.491.1.3
  56. Wickham, H., 2023. dplyr: A grammar of data manipulation. R package version 04.3., p156.
  57. Yang, C., Liu, N., Zhang, Y., 2019. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma, 337: 444–452. https://doi.org/10.1016/j.geoderma.2018.10.002
  58. Yang, C., Sun, J., 2020. Soil salinity drives the distribution patterns and ecological functions of fungi in saline-alkali land in the Yellow River Delta, China. Frontiers in Micro-biology, 11: 594284. https://doi.org/10.3389/fmicb.2020.594284
  59. Zeng, Q., Lebreton, A., Auer, L., Man, X., Jia, L., Wang, G., Gong, S., Sai, W., Lombard, V., Buée, M., Wu, G., Dai, Y., Yang, Z., Martin, F.M., 2023. Stable functional structure despite high taxonomic variability across fungal communities in soils of old-growth montane forests. Microbiome, 11 (1): 217. https://doi.org/10.1186/s40168-023-01650-7
  60. Zhang, C., Yang, C., Cai, F., Ma, T., Wei, L., Jin, M., Wang, Y., Qi, N., 2024. Occurrence and identification of two Nothophoma species causing branch canker and leaf brown spot of walnut in China. Canadian Journal of Plant Pathology, 46: 367–377. https://doi.org/10.1080/07060661.2024.2317897
  61. Zhang, K., Zentella, R., Burkey, K.O., Liao, H.L., Tisdale, R.H., 2023. Microbial community dynamics responding to nutrient allocation associated with soybean cultivar ‘Jake’ ozone adaptation. Science of the Total Environment, 864: 161008. https://doi.org/10.1016/j.scitotenv.2022.161008
DOI: https://doi.org/10.2478/foecol-2025-0015 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 149 - 161
Submitted on: Dec 16, 2024
Accepted on: May 24, 2025
Published on: Jul 23, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Judith A. Sánchez-Ledesma, Bernardo Águila, Roberto Garibay-Orijel, Cristina García-De la Peña, Erika Nava-Reyna, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.