References
- A
ltman , J., Fibich , P., Santruckova , H., Dolezal , J., Stepanek , P., Kopacek , J., Hunova I., Oulehle F., Tumajer J., Cienciala E., 2017. Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Science of The Total Environment, 609: 506–516. https://doi.org/10.1016/j.scitotenv.2017.07.134 - B
alducci , L., Deslauriers , A., Rossi , S., Giovannelli , A., 2019. Stem cycle analyses help decipher the nonlinear response of trees to concurrent warming and drought. Annals of Forest Science, 76 (3): 88. https://doi.org/10.1007/s13595-019-0870-7 - B
etsch , P., Bonal , D., Breda , N., Montpied , P., Peiffer , M., Tuzet , A., Granier , A., 2011. Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agricultural and Forest Meteorology, 151 (5): 531–543. https://doi.org/10.1016/j.agrformet.2010.12.008 - B
restic , M., Zivcak , M., Kalaji , H.M., Carpentier , R., Allakhverdiev , S.I., 2012. Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiology and Biochemistry, 57: 93–105. https://doi.org/10.1016/j.plaphy.2012.05.012 - B
rinkmann , N., Eugster , W., Zweifel , R., Buchmann , N., Kahmen , A., 2016. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiology, 36: 1508–1519. https://doi.org/10.1093/treephys/tpw062 - B
rodribb T.J., McAdam , S.A.M., 2013. Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiology, 162 (3): 1370–1377. https://doi.org/10.1104/pp.113.217877 - B
ussotti , F., Gerosa , G., Digrado , A., Pollastrini , M., 2020. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecological Indicators, 108. https://doi.org/10.1016/j.ecolind.2019.105686 - C
abon , A., Peters , R.L., Fonti , P., Martínez‐ Vilalta , J., De Cáceres , M., 2020. Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient. New Phytologist, 226 (5): 1325–1340. https://doi.org/10.1111/nph.16456 - Č
ermák , J., Kucera , J., Bauerle , W.L., Phillips N., Hinckley , T.M., 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology, 27 (2): 181–198. https://doi.org/10.1093/treephys/27.2.181 - C
eusters , N., Valcke R., Frans , M., Claes , J.E., Van den Ende , W., Ceusters J., 2019. Performance index and PSII connectivity under drought and contrasting light regimes in the CAM orchid Phalaenopsis. Frontiers in Plant Science. 10. https://doi.org/10.3389/fpls.2019.01012 - C
han , T., Hölttä , T., Berninger , F., Mäkinen , H., Nöjd , P., Mencuccini , M., Nikinmaa , E., 2016. Separating water‐ potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell and Environment, 39 (2): 233–244. https://doi.org/10.1111/pce.12541 - C
haves , M.M., 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89 (7): 907–916. https://doi.org/10.1093/aob/mcf105 - C
hristensen , J.H., Christensen , O.B., 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81 (S1): 7–30. https://doi.org/10.1007/s10584-006-9210-7 - G
e , Z., Kellomäki , S., Zhou , X., Wang , K., Peltola , H., Väisänen , H., Strandman , H., 2013. Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in southern Finland: an ecosystem model based approach. Ecohydrology, 6 (1): 51–63. https://doi.org/10.1002/eco.276 - G
oldsmith , G.R., Lehmann , M.M., Cernusak , L.A., Arend , M., Siegwolf , R.T.W., 2017. Inferring foliar water up-take using stable isotopes of water. Oecologia, 184 (4): 763–766. https://doi.org/10.1007/s00442-017-3917-1 - G
omes , M.T.G., da Luz , A.C., dos Santos , M.R.,do Carmo Pimentel Batitucci , M., Silva , D. M., Falqueto , A.R., 2012. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142: 49–56. https://doi.org/10.1016/j.scienta.2012.04.026 - H
erzog , K., Häsler , R., Thum , R., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees, 10 (2): 94–101. https://doi.org/10.1007/BF00192189 - H
esse , B.D., Gebhardt , T., Hafner , B.D., Hikino , K., Reitsam , A., Gigl , M., Dawid , C., Häberle , K.-H., Grams , T.E.E., 2023. Physiological recovery of tree water relations upon drought release—response of mature beech and spruce after five years of recurrent summer drought. Tree Physiology, 43 (4): 522–538. https://doi.org/10.1093/treephys/tpac135 - H
lásny , T., Zimová , S., Merganičová , K., Štěpánek , P., Modlinger , R., Turčáni , M., 2021. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. Forest Ecology and Management, 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075 - H
siao , T.C., Bradford , K.J., 1983. Physiological consequences of cellular water deficits. In Taylor , H.M., Jordan , W.R., Sinclair , T.R. (eds). Limitations to efficient water use in crop production. Madison, Wis.: American Society of Agronomy, p. 227–265. - I
rvine , J., Grace J., 1997. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta, 202 (4): 455–461. https://doi.org/10.1007/s004250050149 - J
ežík , M., Blaženec , M., Letts , M.G., Ditmarová , Ľ., Sitková , Z., Střelcová , K., 2015. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow. Ecohydrology, 8 (3): 378–386. https://doi.org/10.1002/eco.1536 - K
annenberg , S.A., Novick , K.A., Alexander , M.R., Maxwell , J.T., Moore , D.J.P., Phillips , R.P., Anderegg , W.R.L., 2019. Linking drought legacy effects across scales: from leaves to tree rings to ecosystems. Global Change Biology, 25 (9): 2978–2992. https://doi.org/10.1111/gcb.14710 - K
lein , T., 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28 (6): 1313–1320. https://doi.org/10.1111/1365-2435.12289 - K
lein , T., Rotenberg , E., Cohen ‐Hilaleh , E., Raz‐Y aseef , N., Tatarinov , F., Preisler , Y., Ogée , J., Cohen , S., Yakir , D., 2014. Quantifying transpirable soil water and its relations to tree water use dynamics in a water‐limited pine forest. Ecohydrology, 7 (2): 409–419. https://doi.org/10.1002/eco.1360 - K
nüver , T., Bär , A., Ganthaler , A., Gebhardt , T., Grams , T. E. E., Häberle , K.‐H., Hesse , B.D., Losso , A., Tomedi , I., Mayr , S., Beikircher , B., 2022. Recovery after long‐ term summer drought: hydraulic measurements reveal legacy effects in trunks of Picea abies but not in Fagus sylvatica. Plant Biology, 24 (7): 1240–1253. https://doi.org/10.1111/plb.13444 - K
öcher , P., Horna , V., Leuschner , C., 2012. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiology, 32 (8): 1021– 1032. https://doi.org/10.1093/treephys/tps049 - K
onôpková , A., Kurjak , D., Kmeť , J., Klumpp , R., Longauer , R., Ditmarová , Ľ., Gömöry , D., 2018. Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill.) provenances. Trees, 32 (1): 73–86. https://doi.org/10.1007/s00468-017-1612-9 - K
örner , C., 2015. Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25: 107–114. https://doi.org/10.1016/j.pbi.2015.05.003 - K
rejza , J., Cienciala , E., Světlík , J., Bellan , M., Noyer , E., Horáček , P., Štěpánek , P., Marek , M.V., 2021. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35 (1): 103–119. https://doi.org/10.1007/s00468-020-02022-6 - L
indfors , L., Hölttä , T., Lintunen , A., Porcar -Castell , A., Nikinmaa , E., Juurola , E., 2015. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings. Tree Physiology, 35 (12): 1314–1324. https://doi.org/10.1093/treephys/tpv095 - L
u , P., Biron , P., Granier , A., Cochard , H., 1996. Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation. Annales Des Sciences Forestières, 53 (1): 113–121. https://doi.org/10.1051/forest:19960108 - M
äkinen , H., Nöjd , P., Mielikäinen , K., 2001. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees, 15 (3): 177–185. https://doi.org/10.1007/s004680100089 - M
edrano , H., 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, 89 (7): 895– 905. https://doi.org/10.1093/aob/mcf079 - M
encuccini , M., Hölttä , T., Sevanto , S., Nikinmaa , E., 2013. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem‐generated turgor signal. New Phytologist, 198 (4): 1143–1154. https://doi.org/10.1111/nph.12224 - M
uller , B., Pantin , F., Génard , M., Turc , O., Freixes , S., Piques , M., Gibon , Y., 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62 (6): 1715– 1729. https://doi.org/10.1093/jxb/erq438 - N
alevanková , P., Ježík , M., Sitková , Z., Vido , J., Leštianska , A., Střelcová , K., 2018. Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology, 11 (6): e1958. https://doi.org/10.1002/eco.1958 - N
euwirth , B., Rabbel , I., Bendix , J., Bogena , H.R., Thies , B., 2021. The European heat wave 2018: the dendroecological response of oak and spruce in Western Germany. Forests, 12 (3): 283. https://doi.org/10.3390/f12030283 - O
berhuber , W., Hammerle , A., Kofler , W., 2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00703 - O
berhuber , W., Mennel , J., 2010. Different radial growth responses of co-occurring coniferous forest trees in the Alps to drought. Geophysical Research Abstracts, 12: (EGU2010-695–1). - O
berhuber , W., Sehrt , M., Kitz , F., 2020. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agricultural and Forest Meteorology, 290: 108026. https://doi.org/10.1016/j.agrformet.2020.108026 - O
ffenthaler , I., Hietz , P., Richter , H., 2001. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees, 15 (4): 215– 221. https://doi.org/10.1007/s004680100090 - O
hashi , Y., Nakayama , N., Saneoka , H., Fujita , K., 2006. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50 (1): 138–141. https://doi.org/10.1007/s10535-005-0089-3 - O
rlowsky , B., Seneviratne , S.I., 2012. Global changes in extreme events: regional and seasonal dimension. Climate Change, 110 (3–4): 669–696. https://doi.org/10.1007/s10584-011-0122-9 - P
eters , R.L., Steppe , K., Cuny , H.E., De Pauw , D.J.W., Frank , D.C., Schaub . M., Rathgeber , C.B.K., Cabon , A., Fonti , P., 2021. Turgor – a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229 (1): 213–229. https://doi.org/10.1111/nph.16872 - P
iovesan , G., Biondi , F., 2021. On tree longevity. New Phytologist, 231 (4): 1318–1337. https://doi.org/10.1111/nph.17148 - R
osati , A., Paoletti , A., Lodolini , E.M., Famiani , F., 2024. Cultivar ideotype for intensive olive orchards: plant vigor, biomass partitioning, tree architecture and fruiting characteristics. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1345182 - R
ossi , S., Anfodillo , T., Čufar , K., Cuny , H.E., Deslauriers , A., Fonti , P., Frank , D., Gričar , J., Gruber , A., Huang , J., Jyske , T., Kašpar , J., King , G., Krause , C., Liang , E., Mäkinen , H., Morin , H., Nöjd , P., Oberhuber , W., Prislan , P., Rathgeber , C.B.K., Saracino , A., Swidrak , I., Treml V., 2016. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology , 22 (11): 3804–3813. https://doi.org/10.1111/gcb.13317 - R
ötzer , T., Biber , P., Moser , A., Schäfer , C., Pretzsch , H., 2017. Stem and root diameter growth of European beech and Norway spruce under extreme drought. Forest Ecology and Management, 406: 184–195. https://doi.org/10.1016/j.foreco.2017.09.070 - S
alomón , M.J., Watts -Williams , S.J., McLaughlin , M.J., Bücking , H., Singh , B.K., Hutter , I., Schneider , C., Martin , F.M., Vosatka , M., Guo , L., Ezawa , T., Saito , M., Declerck , S., Zhu , Y.-G., Bowles T., Abbott L.K., Smith , F.A., Cavagnaro , T.R.,van der Heijden , M.G.A., 2022. Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. Iscience, 25 (7): 104636. https://doi.org/10.1016/j.isci.2022.104636 - S
chuldt , B., Buras , A., Arend , M., Vitasse , Y., Beierkuhnlein , C., Damm , A., Gharun , M., Grams , T.E. E., Hauck , M., Hajek , P., Hartmann , H., Hiltbrunner , E., Hoch , G., Holloway -Phillips , M., Körner , C., Larysch , E., Lübbe , T., Nelson , D.B., Rammiig , A., Rigling , A., Rose , L., Ruehr , N.K., Schumann , K., Weiser , F., Werner , C., Wohlgemuth , T., Zang , C.S., Kahmen , A., 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45: 86–103. https://doi.org/10.1016/j.baae.2020.04.003 - S
churman , J.S., Trotsiuk , V., Bače , R., Čada , V., Fraver , S., Janda , P., Kulakowski , D., Labusova , J., Mikoláš , M., Nagel , T.A., Seidl , R., Synek , M., Svobodová , K., Chaskovskyy , O., Teodosiu , M., Svoboda , M., 2018. Large‐scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology, 24 (5): 2169–2181. https://doi.org/10.1111/gcb.14041 - S
imard , S.W., 2018. Mycorrhizal networks facilitate tree communication, learning, and memory. In Baluska , F., Gagliano , M., Witzany , G. (eds). Memory and learning in plants. Signaling and Communication in Plants. Cham: Springer, p. 191–213. https://doi.org/10.1007/978-3-319-75596-0_10 - S
imonin , K.A., Santiago , L.S., Dawson , T.E., 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell and Environment, 32 (7): 882–892. https://doi.org/10.1111/j.1365-3040.2009.01967.x - S
teppe , K., De Pauw , D.J.W., Lemeur , R., Vanrolleghem , P.A., 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology, 26 (3): 257–273. https://doi.org/10.1093/treephys/26.3.257 - S
teppe , K., Sterck , F., Deslauriers , A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20 (6): 335–343. https://doi.org/10.1016/j.tplants.2015.03.015 - S
trasser , R.J., Tsimilli -Michael , M., Srivastava , A., 2004. Analysis of the chlorophyll a fluorescence transient. In Papageorgiou , G.C., Govindjee (eds). Chlorophyll a fluorescence. Advances in Photosynthesis and Respiration, vol. 19. Dordrecht: Springer, p. 321–362. https://doi.org/10.1007/978-1-4020-3218-9_12 - T
ang , A.C., 2002. Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Annals of Botany, 89 (7): 861–870. https://doi.org/10.1093/aob/mcf081 - V
anická , H., Holuša , J., Resnerová , K., Ferenčík , J., Potterf , M., Véle , A., Grodzki , W., 2020. Interventions have limited effects on the population dynamics of Ips typographus and its natural enemies in the Western Carpathians (Central Europe). Forest Ecology and Management, 470–471: 118209. https://doi.org/10.1016/j.foreco.2020.118209 - W
ang , Z., Li , G., Sun , H., Ma , L., Guo , Y., Zhao , Z., Gao , H., Mei , L., 2018. Effects of drought stress on photosyn-thesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7 (11): bio035279. https://doi.org/10.1242/bio.035279 - W
ei , C., Tyree , M.T., Steudle , E., 1999. Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiology, 121 (4): 1191–1205. https://doi.org/10.1104/pp.121.4.1191 - Y
ordanov , I., Velikova , V., Tsonev , T., 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38 (2): 171–186. https://doi.org/10.1023/A:1007201411474 - Z
weifel , R., Drew , D.M., Schweingruber , F., Downes , G. M., 2014. Xylem as the main origin of stem radius changes in Eucalyptus. Functional Plant Biology, 41 (5): 520. https://doi.org/10.1071/FP13240 - Z
weifel , R., Haeni , M., Buchmann , N., Eugster , W., 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist, 211 (3): 839–849. https://doi.org/10.1111/nph.13995 - Z
weifel , R., Hasler , R., 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21 (9): 561–569. https://doi.org/10.1093/treephys/21.9.561 - Z
weifel , R., Item , H., Hasler , R., 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiology, 21 (12–13): 869–877. https://doi.org/10.1093/treephys/21.12-13.869 - Z
weifel , R., Sterck , F., Braun , S., Buchmann , N., Eugster , W., Gessler , A., Häni , M., Peters , R.L., Walthert , L., Wilhelm , M., Ziemińska , K., Etzold S., 2021. Why trees grow at night. New Phytologist, 231 (6): 2174–2185. https://doi.org/10.1111/nph.17552 - Z
weifel , R., Zimmermann , L., Newbery , D.M., 2005. Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25 (2): 147–156. https://doi.org/10.1093/treephys/25.2.147 - Z
weifel , R., Zimmermann , L., Zeugin , F., Newbery , D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57 (6): 1445–1459. https://doi.org/10.1093/jxb/erj125