Have a personal or library account? Click to login
Relation between drought-exposed photosynthetic apparatus and tree water deficit derived from stem diameter variations in Norway spruce seedlings Cover

Relation between drought-exposed photosynthetic apparatus and tree water deficit derived from stem diameter variations in Norway spruce seedlings

Open Access
|Jul 2025

References

  1. Altman, J., Fibich, P., Santruckova, H., Dolezal, J., Stepanek, P., Kopacek, J., Hunova I., Oulehle F., Tumajer J., Cienciala E., 2017. Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Science of The Total Environment, 609: 506–516. https://doi.org/10.1016/j.scitotenv.2017.07.134
  2. Balducci, L., Deslauriers, A., Rossi, S., Giovannelli, A., 2019. Stem cycle analyses help decipher the nonlinear response of trees to concurrent warming and drought. Annals of Forest Science, 76 (3): 88. https://doi.org/10.1007/s13595-019-0870-7
  3. Betsch, P., Bonal, D., Breda, N., Montpied, P., Peiffer, M., Tuzet, A., Granier, A., 2011. Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agricultural and Forest Meteorology, 151 (5): 531–543. https://doi.org/10.1016/j.agrformet.2010.12.008
  4. Brestic, M., Zivcak, M., Kalaji, H.M., Carpentier, R., Allakhverdiev, S.I., 2012. Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiology and Biochemistry, 57: 93–105. https://doi.org/10.1016/j.plaphy.2012.05.012
  5. Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N., Kahmen, A., 2016. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiology, 36: 1508–1519. https://doi.org/10.1093/treephys/tpw062
  6. Brodribb T.J., McAdam, S.A.M., 2013. Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiology, 162 (3): 1370–1377. https://doi.org/10.1104/pp.113.217877
  7. Bussotti, F., Gerosa, G., Digrado, A., Pollastrini, M., 2020. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecological Indicators, 108. https://doi.org/10.1016/j.ecolind.2019.105686
  8. Cabon, A., Peters, R.L., Fonti, P., Martínez‐Vilalta, J., De Cáceres, M., 2020. Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient. New Phytologist, 226 (5): 1325–1340. https://doi.org/10.1111/nph.16456
  9. Čermák, J., Kucera, J., Bauerle, W.L., Phillips N., Hinckley, T.M., 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology, 27 (2): 181–198. https://doi.org/10.1093/treephys/27.2.181
  10. Ceusters, N., Valcke R., Frans, M., Claes, J.E., Van den Ende, W., Ceusters J., 2019. Performance index and PSII connectivity under drought and contrasting light regimes in the CAM orchid Phalaenopsis. Frontiers in Plant Science. 10. https://doi.org/10.3389/fpls.2019.01012
  11. Chan, T., Hölttä, T., Berninger, F., Mäkinen, H., Nöjd, P., Mencuccini, M., Nikinmaa, E., 2016. Separating water‐ potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell and Environment, 39 (2): 233–244. https://doi.org/10.1111/pce.12541
  12. Chaves, M.M., 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89 (7): 907–916. https://doi.org/10.1093/aob/mcf105
  13. Christensen, J.H., Christensen, O.B., 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81 (S1): 7–30. https://doi.org/10.1007/s10584-006-9210-7
  14. Ge, Z., Kellomäki, S., Zhou, X., Wang, K., Peltola, H., Väisänen, H., Strandman, H., 2013. Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in southern Finland: an ecosystem model based approach. Ecohydrology, 6 (1): 51–63. https://doi.org/10.1002/eco.276
  15. Goldsmith, G.R., Lehmann, M.M., Cernusak, L.A., Arend, M., Siegwolf, R.T.W., 2017. Inferring foliar water up-take using stable isotopes of water. Oecologia, 184 (4): 763–766. https://doi.org/10.1007/s00442-017-3917-1
  16. Gomes, M.T.G., da Luz, A.C., dos Santos, M.R., do Carmo Pimentel Batitucci, M., Silva, D. M., Falqueto, A.R., 2012. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142: 49–56. https://doi.org/10.1016/j.scienta.2012.04.026
  17. Herzog, K., Häsler, R., Thum, R., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees, 10 (2): 94–101. https://doi.org/10.1007/BF00192189
  18. Hesse, B.D., Gebhardt, T., Hafner, B.D., Hikino, K., Reitsam, A., Gigl, M., Dawid, C., Häberle, K.-H., Grams, T.E.E., 2023. Physiological recovery of tree water relations upon drought release—response of mature beech and spruce after five years of recurrent summer drought. Tree Physiology, 43 (4): 522–538. https://doi.org/10.1093/treephys/tpac135
  19. Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., Turčáni, M., 2021. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. Forest Ecology and Management, 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075
  20. Hsiao, T.C., Bradford, K.J., 1983. Physiological consequences of cellular water deficits. In Taylor, H.M., Jordan, W.R., Sinclair, T.R. (eds). Limitations to efficient water use in crop production. Madison, Wis.: American Society of Agronomy, p. 227–265.
  21. Irvine, J., Grace J., 1997. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta, 202 (4): 455–461. https://doi.org/10.1007/s004250050149
  22. Ježík, M., Blaženec, M., Letts, M.G., Ditmarová, Ľ., Sitková, Z., Střelcová, K., 2015. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow. Ecohydrology, 8 (3): 378–386. https://doi.org/10.1002/eco.1536
  23. Kannenberg, S.A., Novick, K.A., Alexander, M.R., Maxwell, J.T., Moore, D.J.P., Phillips, R.P., Anderegg, W.R.L., 2019. Linking drought legacy effects across scales: from leaves to tree rings to ecosystems. Global Change Biology, 25 (9): 2978–2992. https://doi.org/10.1111/gcb.14710
  24. Klein, T., 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28 (6): 1313–1320. https://doi.org/10.1111/1365-2435.12289
  25. Klein, T., Rotenberg, E., Cohen‐Hilaleh, E., Raz‐Yaseef, N., Tatarinov, F., Preisler, Y., Ogée, J., Cohen, S., Yakir, D., 2014. Quantifying transpirable soil water and its relations to tree water use dynamics in a water‐limited pine forest. Ecohydrology, 7 (2): 409–419. https://doi.org/10.1002/eco.1360
  26. Knüver, T., Bär, A., Ganthaler, A., Gebhardt, T., Grams, T. E. E., Häberle, K.‐H., Hesse, B.D., Losso, A., Tomedi, I., Mayr, S., Beikircher, B., 2022. Recovery after long‐ term summer drought: hydraulic measurements reveal legacy effects in trunks of Picea abies but not in Fagus sylvatica. Plant Biology, 24 (7): 1240–1253. https://doi.org/10.1111/plb.13444
  27. Köcher, P., Horna, V., Leuschner, C., 2012. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiology, 32 (8): 1021– 1032. https://doi.org/10.1093/treephys/tps049
  28. Konôpková, A., Kurjak, D., Kmeť, J., Klumpp, R., Longauer, R., Ditmarová, Ľ., Gömöry, D., 2018. Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill.) provenances. Trees, 32 (1): 73–86. https://doi.org/10.1007/s00468-017-1612-9
  29. Körner, C., 2015. Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25: 107–114. https://doi.org/10.1016/j.pbi.2015.05.003
  30. Krejza, J., Cienciala, E., Světlík, J., Bellan, M., Noyer, E., Horáček, P., Štěpánek, P., Marek, M.V., 2021. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35 (1): 103–119. https://doi.org/10.1007/s00468-020-02022-6
  31. Lindfors, L., Hölttä, T., Lintunen, A., Porcar-Castell, A., Nikinmaa, E., Juurola, E., 2015. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings. Tree Physiology, 35 (12): 1314–1324. https://doi.org/10.1093/treephys/tpv095
  32. Lu, P., Biron, P., Granier, A., Cochard, H., 1996. Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation. Annales Des Sciences Forestières, 53 (1): 113–121. https://doi.org/10.1051/forest:19960108
  33. Mäkinen, H., Nöjd, P., Mielikäinen, K., 2001. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees, 15 (3): 177–185. https://doi.org/10.1007/s004680100089
  34. Medrano, H., 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, 89 (7): 895– 905. https://doi.org/10.1093/aob/mcf079
  35. Mencuccini, M., Hölttä, T., Sevanto, S., Nikinmaa, E., 2013. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem‐generated turgor signal. New Phytologist, 198 (4): 1143–1154. https://doi.org/10.1111/nph.12224
  36. Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., Gibon, Y., 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62 (6): 1715– 1729. https://doi.org/10.1093/jxb/erq438
  37. Nalevanková, P., Ježík, M., Sitková, Z., Vido, J., Leštianska, A., Střelcová, K., 2018. Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology, 11 (6): e1958. https://doi.org/10.1002/eco.1958
  38. Neuwirth, B., Rabbel, I., Bendix, J., Bogena, H.R., Thies, B., 2021. The European heat wave 2018: the dendroecological response of oak and spruce in Western Germany. Forests, 12 (3): 283. https://doi.org/10.3390/f12030283
  39. Oberhuber, W., Hammerle, A., Kofler, W., 2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00703
  40. Oberhuber, W., Mennel, J., 2010. Different radial growth responses of co-occurring coniferous forest trees in the Alps to drought. Geophysical Research Abstracts, 12: (EGU2010-695–1).
  41. Oberhuber, W., Sehrt, M., Kitz, F., 2020. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agricultural and Forest Meteorology, 290: 108026. https://doi.org/10.1016/j.agrformet.2020.108026
  42. Offenthaler, I., Hietz, P., Richter, H., 2001. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees, 15 (4): 215– 221. https://doi.org/10.1007/s004680100090
  43. Ohashi, Y., Nakayama, N., Saneoka, H., Fujita, K., 2006. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50 (1): 138–141. https://doi.org/10.1007/s10535-005-0089-3
  44. Orlowsky, B., Seneviratne, S.I., 2012. Global changes in extreme events: regional and seasonal dimension. Climate Change, 110 (3–4): 669–696. https://doi.org/10.1007/s10584-011-0122-9
  45. Peters, R.L., Steppe, K., Cuny, H.E., De Pauw, D.J.W., Frank, D.C., Schaub. M., Rathgeber, C.B.K., Cabon, A., Fonti, P., 2021. Turgor – a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229 (1): 213–229. https://doi.org/10.1111/nph.16872
  46. Piovesan, G., Biondi, F., 2021. On tree longevity. New Phytologist, 231 (4): 1318–1337. https://doi.org/10.1111/nph.17148
  47. Rosati, A., Paoletti, A., Lodolini, E.M., Famiani, F., 2024. Cultivar ideotype for intensive olive orchards: plant vigor, biomass partitioning, tree architecture and fruiting characteristics. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1345182
  48. Rossi, S., Anfodillo, T., Čufar, K., Cuny, H.E., Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., Huang, J., Jyske, T., Kašpar, J., King, G., Krause, C., Liang, E., Mäkinen, H., Morin, H., Nöjd, P., Oberhuber, W., Prislan, P., Rathgeber, C.B.K., Saracino, A., Swidrak, I., Treml V., 2016. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22 (11): 3804–3813. https://doi.org/10.1111/gcb.13317
  49. Rötzer, T., Biber, P., Moser, A., Schäfer, C., Pretzsch, H., 2017. Stem and root diameter growth of European beech and Norway spruce under extreme drought. Forest Ecology and Management, 406: 184–195. https://doi.org/10.1016/j.foreco.2017.09.070
  50. Salomón, M.J., Watts-Williams, S.J., McLaughlin, M.J., Bücking, H., Singh, B.K., Hutter, I., Schneider, C., Martin, F.M., Vosatka, M., Guo, L., Ezawa, T., Saito, M., Declerck, S., Zhu, Y.-G., Bowles T., Abbott L.K., Smith, F.A., Cavagnaro, T.R., van der Heijden, M.G.A., 2022. Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. Iscience, 25 (7): 104636. https://doi.org/10.1016/j.isci.2022.104636
  51. Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T.E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D.B., Rammiig, A., Rigling, A., Rose, L., Ruehr, N.K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C.S., Kahmen, A., 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45: 86–103. https://doi.org/10.1016/j.baae.2020.04.003
  52. Schurman, J.S., Trotsiuk, V., Bače, R., Čada, V., Fraver, S., Janda, P., Kulakowski, D., Labusova, J., Mikoláš, M., Nagel, T.A., Seidl, R., Synek, M., Svobodová, K., Chaskovskyy, O., Teodosiu, M., Svoboda, M., 2018. Large‐scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology, 24 (5): 2169–2181. https://doi.org/10.1111/gcb.14041
  53. Simard, S.W., 2018. Mycorrhizal networks facilitate tree communication, learning, and memory. In Baluska, F., Gagliano, M., Witzany, G. (eds). Memory and learning in plants. Signaling and Communication in Plants. Cham: Springer, p. 191–213. https://doi.org/10.1007/978-3-319-75596-0_10
  54. Simonin, K.A., Santiago, L.S., Dawson, T.E., 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell and Environment, 32 (7): 882–892. https://doi.org/10.1111/j.1365-3040.2009.01967.x
  55. Steppe, K., De Pauw, D.J.W., Lemeur, R., Vanrolleghem, P.A., 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology, 26 (3): 257–273. https://doi.org/10.1093/treephys/26.3.257
  56. Steppe, K., Sterck, F., Deslauriers, A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20 (6): 335–343. https://doi.org/10.1016/j.tplants.2015.03.015
  57. Strasser, R.J., Tsimilli-Michael, M., Srivastava, A., 2004. Analysis of the chlorophyll a fluorescence transient. In Papageorgiou, G.C., Govindjee (eds). Chlorophyll a fluorescence. Advances in Photosynthesis and Respiration, vol. 19. Dordrecht: Springer, p. 321–362. https://doi.org/10.1007/978-1-4020-3218-9_12
  58. Tang, A.C., 2002. Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Annals of Botany, 89 (7): 861–870. https://doi.org/10.1093/aob/mcf081
  59. Vanická, H., Holuša, J., Resnerová, K., Ferenčík, J., Potterf, M., Véle, A., Grodzki, W., 2020. Interventions have limited effects on the population dynamics of Ips typographus and its natural enemies in the Western Carpathians (Central Europe). Forest Ecology and Management, 470–471: 118209. https://doi.org/10.1016/j.foreco.2020.118209
  60. Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., Mei, L., 2018. Effects of drought stress on photosyn-thesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7 (11): bio035279. https://doi.org/10.1242/bio.035279
  61. Wei, C., Tyree, M.T., Steudle, E., 1999. Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiology, 121 (4): 1191–1205. https://doi.org/10.1104/pp.121.4.1191
  62. Yordanov, I., Velikova, V., Tsonev, T., 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38 (2): 171–186. https://doi.org/10.1023/A:1007201411474
  63. Zweifel, R., Drew, D.M., Schweingruber, F., Downes, G. M., 2014. Xylem as the main origin of stem radius changes in Eucalyptus. Functional Plant Biology, 41 (5): 520. https://doi.org/10.1071/FP13240
  64. Zweifel, R., Haeni, M., Buchmann, N., Eugster, W., 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist, 211 (3): 839–849. https://doi.org/10.1111/nph.13995
  65. Zweifel, R., Hasler, R., 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21 (9): 561–569. https://doi.org/10.1093/treephys/21.9.561
  66. Zweifel, R., Item, H., Hasler, R., 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiology, 21 (12–13): 869–877. https://doi.org/10.1093/treephys/21.12-13.869
  67. Zweifel, R., Sterck, F., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Häni, M., Peters, R.L., Walthert, L., Wilhelm, M., Ziemińska, K., Etzold S., 2021. Why trees grow at night. New Phytologist, 231 (6): 2174–2185. https://doi.org/10.1111/nph.17552
  68. Zweifel, R., Zimmermann, L., Newbery, D.M., 2005. Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25 (2): 147–156. https://doi.org/10.1093/treephys/25.2.147
  69. Zweifel, R., Zimmermann, L., Zeugin, F., Newbery, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57 (6): 1445–1459. https://doi.org/10.1093/jxb/erj125
DOI: https://doi.org/10.2478/foecol-2025-0013 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 124 - 138
Submitted on: Mar 24, 2025
Accepted on: Jun 6, 2025
Published on: Jul 23, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Sajad Muhammad Ayaz, Hana Húdoková, Gabriela Jamnická, Peter Fleischer, Ľubica Ditmarová, Abdul Razzak, Marek Ježík, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.