Have a personal or library account? Click to login
Effect of tree size attributes on fruit production and animal-mediated seed dispersal web in Melia azedarach L. (Chinaberry) in north-west Himalaya, India Cover

Effect of tree size attributes on fruit production and animal-mediated seed dispersal web in Melia azedarach L. (Chinaberry) in north-west Himalaya, India

Open Access
|Jan 2025

References

  1. Andersen, A.N., 1989. How important is seed predation to recruitment in stable populations of long-lived perennials? Oecologia, 81: 310–315. https://doi.org/10.1007/BF00377076
  2. Augspurger, C.K., Kelly, C.K., 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61: 211–217. https://doi.org/10.1007/BF00396763
  3. Azad, M.S., Musa, Z.A., Matin, A., 2010. Effect of pre-sowing treatments on seed germination of Melia azedarach. Journal of Forestry Research, 21(2): 193−196. https://doi.org/10.1007/s11676-010-0031-1
  4. Badalamenti, E., Cusimano, D., La Mantia, T., Pasta, S., 2013. The recent spread of the invasive woody alien plant Melia azedarach L. (Meliaceae) in Sicily. Il Naturalista Siciliano, 4 (37): 605–613. [cit. 2024-08-19]. https://hdl.handle.net/10447/94518
  5. Barnea, A., Yom-Tov, Y., Friedman, J., 1991. Does ingestion by birds affect seed germination? Functional Ecology, 394–402. https://doi.org/10.2307/2389811
  6. Bartczak, M., Lisiecka, J., Knaflewski, M., 2010. Correla tion between selected parameters of planting material and strawberry yield. Folia Horticulturae, 22: 9–12. DOI: 10.2478/fhort-2013-0144
  7. Batcher, M.S., 2000. Element stewardship abstract for Melia azedarach. Arlington, Virginia: The Natural Conservancy. 7 p.
  8. Bazzaz, F.A., Chiariello, N.R., Coley, P.D., Pitelka, L.F., 1987. Allocating resources to reproduction and defense. BioScience, 37(1): 58–67. https://doi.org/10.2307/1310178
  9. Bello, C., Galetti, M., Montan, D., Pizo, M.A., Mariguela, T.C., Culot, L., Bufalo, F., Labecca, F., Pedrosa, F., Constantini, R., Emer, C., Silva, W.R., da Silva, F.R., Ovaskainen, O., Jordano, P., 2017. Atlantic frugivory: a plant-frugivore interaction data set for the Atlantic Forest. Ecology, 98 (6): 1729. https://doi.org/10.1002/ecy.1818
  10. Botha, C.J., Penrith, M.L., 2009. Potential plant poisoning in dogs and cats in southern Africa. Journal of the South African Veterinary Association, 80: 63–74. [cit. 2024-08-07]. https://hdl.handle.net/10520/EJC99818
  11. Burns, K.C., 2013. What causes size coupling in fruit–frugivore interaction webs? Ecology, 94: 295–300. https://doi.org/10.1890/12-1161.1
  12. Carbone, M.S., Czimczik, C.I., Keenan, T.F., Murakami, P.F., Pederson, N., Schaberg, P.G., Richardson, A.D., 2013. Age, allocation and availability of non-structural carbon in mature red maple trees. The New Phytologist, 200: 1145–1155. https://doi.org/10.1111/nph.12448
  13. Champion, H.G., Seth, S.K., 1968. A revised classification of forest types in India. New Delhi: Manager of Publications, Government of India. 404 p.
  14. Chapman, C.A., Chapman, L.J., Wangham, R., Hunt, K., Gebo, D., Gardner, L., 1992. Estimators of fruit abundance of tropical trees. Biotropica, 24: 527–531. https://doi.org/10.2307/2389015
  15. Chauhan, P.S., Manhas, R.K., Bhandari, D., Negi, J.D.S., 2004. Carbon stock assessment in old growth Pinus rox burghii Spreng. plantation of Forest Research Institute, New Forest, Dehra Dun, India. Indian Journal of Forestry, 27 (1): 45–49. DOI: 10.54207/bsmps1000-2004-7QLM25
  16. Chen, J., Deng, X.B., Bai, Z.L., Yang, O., Chen, G.Q., Liu, Y., Liu, Z.Q., 2001. Fruit characteristics and Muntiacus muntijak vaginalis (Muntjac) visits to individual plants of Choerospondias axillaris. Biotropica, 33: 718–722. https://doi.org/10.1646/0006-3606(2001)033[0718:FCAMMV]2.0.CO;2
  17. Crawley, M.J., 1992. Seed predators and plant population dynamics. In Fenner, M. (ed.). Seeds, the ecology of regeneration in plant communities. Wallingford: CAB International, p. 157–191.
  18. Datta, A., 1998. Hornbill abundance in unlogged forest, selectively logged forest and a forest plantation in Arunachal Pradesh, India. Oryx, 32 (4): 285–294. https://doi.org/10.1046/j.1365-3008.1998.d01-58.x
  19. De Steven, D., Wright, S.J., 2002. Consequences of variable reproduction for seedling recruitment in three neo-tropical tree species. Ecology, 83: 2315–2327. https://doi.org/10.1890/0012-9658(2002)083[2315:COVRFS]2.0.CO;2
  20. Dirr, M. A., Heuser, C.W., 1987. The reference manual of woody plant propagation. Athens, GA: Varsity Press. 239 p.
  21. Dlamini, P., Zachariades, C., Downs, C.T., 2018. The effect of frugivorous birds on seed dispersal and germination of the invasive Brazilian pepper tree (Schinus terebinthifolius) and Indian laurel (Litsea glutinosa). South African Journal of Botany, 114: 61–68. https://doi.org/10.1016/j.sajb.2017.10.009
  22. García-Rodríguez, A., Albrecht, J., Farwig, N., Frydryszak, D., Parres, A., Schabo, D.G., Selvaa, N., 2022. Functional complementarity of seed dispersal services provided by birds and mammals in an alpine ecosystem. Journal of Ecology, 110: 232–247. https://doi.org/10.1111/1365-2745.13799
  23. Genes, L., Dirzo, R., 2022. Restoration of plant-animal interactions in terrestrial ecosystems. Biological Conservation, 265: 109393. https://doi.org/10.1016/j.biocon.2021.109393
  24. Green, R.J., 1993. Avian seed dispersal in and near subtropical rainforests. Wildlife Research, 20: 535–557. https://doi.org/10.1071/WR9930535
  25. Greene, D.F., Johnson, E.A., 1994. Estimating the mean annual seed production of trees. Ecology, 75 (3): 642–647. https://doi.org/10.2307/1941722
  26. Han, Q., Kabeya, D., Iio, A., Kakubari, Y., 2008. Masting in Fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiology, 28 (8): 1269–1276. https://doi.org/10.1093/treephys/28.8.1269
  27. Howe, H.F., 1980. Monkey dispersal and waste of a neotropical fruit. Ecology, 61 (4): 944–959. https://doi.org/10.2307/1936763
  28. Howe, H.F., Smallwood, J., 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13: 201–228. http://www.jstor.org/stable/2097067
  29. Huang, R.C., Tadera, K., Yagi, F., Minami, Y., Okamura, H., Iwagawat, T., Nakatani, M., 1996. Limonoids from Melia azedarach. Phytochemistry, 43: 581–583. https://doi.org/10.1016/0031-9422(96)00353-6
  30. Hulme, P.E., Benkman, C.W., 2002. Granivory. In Herrera, C., Pellmyr, O. (eds). Plant-animal interactions: an evolutionary approach. New York: Blackwell Scientific Publications. 132–154.
  31. Ichie, T., Nakagawa, M., 2013. Dynamics of mineral nutrient storage for mast reproduction in the tropical emergent tree Dryobalanops aromatica. Ecological Research, 28 (2): 151–158. https://doi.org/10.1007/s11284-011-0836-1
  32. Janzen, D.H., 1970. Herbivores and number of tree species in tropical forests. American Naturalist, 104: 501–28. https://doi.org/10.1086/282687
  33. Jennings, S., Baima, A.M.V., 2005. The influence of population and forest structure on fruit production in mahogany (Swietenia macrophylla King) and their consequences for sustainable management. International Forestry Review, 7: 363–369. https://doi.org/10.1505/ifor.2005.7.4.363
  34. Johnson, C., Raiford, T., Whitley, K., 2005. Initial crown diameter of transplants influences marketable yield components of two strawberry cultivars in annual hill production system. International Journal of Fruit Science, 5: 23–29. https://doi.org/10.1300/J492v05n04_03
  35. Jones, F.A., Comita, L.S., 2008. Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population. Proceedings of the Royal Society of London, B, Biological Sciences, 275: 2759–2767. https://doi.org/10.1098/rspb.2008.0894
  36. Jordano, P., 1983. Fig-seed predation and dispersal by birds. Biotropica, 15: 38–41. https://doi.org/10.2307/2387996
  37. Jordano, P., Schupp, E.W., 2000. Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecological Monographs, 70: 591–615. https://doi.org/10.1890/0012-9615(2000)070[0591:SDETQC]2.0.CO;2
  38. Kainer, K.A., Wadt, L.H.O., Staudhammer, C.L., 2007. Explaining variation in Brazil nut fruit production. Forest Ecology and Management, 250: 244–255. https://doi.org/10.1016/j.foreco.2007.05.024
  39. Kanwal, Q., Hussain, I., Siddiqui, L.H., Javaid, A., 2011. Antimicrobial activity screening of isolated flavonoids from Azadirachta indica leaves. Journal of the Serbian Chemical Society, 76 (3): 375–384. https://doi.org/10.2298/JSC100406027K
  40. Keith, S., Urban, E.K., Fry, C.H., 1992. The birds of Africa. Volume IV. London: Academic Press Limited. 609 p. Khaiper, M., Dhanda, S.K., Ahlawat, K.S., Poonia, P.K.,
  41. Kumar, A., Verma, P., Chugh, R., Jangra, M., 2023. Unlocking the growth potential of Melia azedarach seedlings: the synergistic impact of Glomus mosseae and pre-sowing treatments. In Biological ForumAn International Journal, 15 (8): 371–377. DOI: 10.13140/RG.2.2.14455.39843
  42. Khan, A.V., 2002. Ethnobotanical studies on plants with medicinal and anti-bacterial properties. PhD thesis. Aligarh Muslim University, Aligarh. 293 p.
  43. Khan, A.V., Ahmed, Q.U., Mir, M.R., Shukla, I. Khan, A.A., 2011. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains. Asian Pacific Journal of Tropical Biomedicine, 1 (6): 452–455. DOI: 10.1016/S2221-1691(11) 60099-3
  44. Khanduri, V.P., 2022. Birds visiting flowers of Erythrina suberosa: their abundance, frequency of visits and role as pollinators in a sub-tropical montane forest of Garhwal Himalaya. Polish Journal of Ecology, 70 (2-3): 117–127. https://doi.org/10.3161/15052249PJE2020.70.2.005
  45. Khanduri, V.P., 2023. Pollen limitation failing reproductive success in selected animal pollinated trees of tropical moist deciduous forest of north-eastern hill region, India. Hacquetia, 221: 117–129. https://doi.org/10.2478/hacq-2022-0014
  46. Khanduri, V.P., Sukumaran, A., Sharma, C.M., 2019. Male skewed sex ratio in Myricaesculenta: a dioecious tree species. Trees, 33 (4): 1157–1165. https://doi.org/10.1007/s00468-019-01850-5
  47. Klimas, C.A., Kainer, K.A., Wadt, L.H., Staudhammer, C.L., Rigamonte-Azevedo, V., Freire Correia, M., da Silva Lima, L.M., 2012. Control of Carapa guianensis phenology and seed production at multiple scales: a five-year study exploring the influences of tree attributes, habitat heterogeneity and climate cues. Journal of Tropical Ecology, 28: 105–118. DOI: 10.1017/S0266467411000630
  48. Kohyama, T., Suzuki, E., Partomihardjo, T., Yamada, T., Kubo, T., 2003. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology, 91: 797–806. https://doi.org/10.1046/j.1365-2745.2003.00810.x
  49. Korine, C., Izhaki, I., Arad, Z., 1999. Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat’s diet and implications for its conservation. Biological Conservation, 88: 301–306. https://doi.org/10.1016/S0006-3207(98)00126-8
  50. Levine, J.M., Murrell, D., 2003. Community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics, 34: 549–574. https://doi.org/10.1146/annurev.ecolsys.34.011802.132400
  51. Mabberley, D.J., 1984. A monograph of Melia in Asia and the Pacific. The history of white cedar and persian lilac. Gardens’ Bulletin Singapore, 37: 49–64.
  52. Malhi, C.S., Brar, S.S., 1987. Damage to Ber (Zizyphus mauritiana Umran) by Rose-ringed Parakeet at Ludhiana. Indian Journal of Forestry, 8: 290–292.
  53. Minor, D.M., Kobe, R.K., 2017. Masting synchrony in northern hardwood forests: super producers govern population fruit production. Journal of Ecology, 105 (4): 987–998. https://doi.org/10.1111/1365-2745.12729
  54. Minor, D.M., Kobe, R.K., 2019. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest. Ecology and Evolution, 9 (3): 1458–1472. https://doi.org/10.1002/ece3.4867
  55. Mittelbach, G.G., Gross, K.L., 1984. Experimental studies of seed predation in old-fields. Oecologia, 65: 7–13. https://doi.org/10.1007/BF00384455
  56. Moore, P.D., 2001. The guts of seed dispersal. Nature, 414 (6862): 406–407. https://doi.org/10.1038/35106677
  57. Nabe-Nielsen, J., Kollmann, J., Peña-Claros, M., 2009. Effects of liana load, tree diameter and distances between conspecifics on seed production in tropical timber trees. Forest Ecology and Management, 257: 987–993. https://doi.org/10.1016/j.foreco.2008.10.033
  58. Obeso, J.R., 2002. The costs of reproduction in plants. New Phytologist, 155: 321–348. https://doi.org/10.1046/j.1469-8137.2002.00477.x
  59. Okimat, J.P., Babweteera, F., Ehbrecht, M., 2024. Intra-specific variation in fruit production of African mahogany (Khaya anthotheca) in a semi-deciduous East African rainforest. African Journal of Ecology, 62 (1): e13224. https://doi.org/10.1111/aje.13224
  60. Osuri, A.M., Ratnam, J., Varma, V., Alvarez-Loayza, P., Hurtado Astaiza, J., Bradford, M., et al., 2016. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nature Communications, 7: 11351. https://doi.org/10.1038/ncomms11351
  61. Owens, J.N., 1995. Constraints to seed production: temperate and tropical forest trees. Tree Physiology, 15 (7-8): 477–484. https://doi.org/10.1093/treephys/15.7-8.477
  62. Peres, C., Emilio, T., Schietti, J., Desmoulière, S., Levi, T., 2016. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 113: 892–897. https://doi.org/10.1073/pnas.1516525113
  63. Pizo, M.A., 1997. Seed dispersal and predation in two populations of Cabralea canjerana (Meliaceae) in the Atlantic Forest of Southeastern Brazil. Journal of Tropical Ecology, 13: 559–577. DOI: 10.1017/S0266467400010713
  64. Pradhan, P., Sukumaran, A., Khanduri, V.P., Singh, B., Rawat, D., Riyal, M.K., Kumar, M., Pinto, M.M.S.C., 2024. Effect of crown layers on reproductive effort and success in andromonoecious Aesculus indica (Wall. ex Camb.) Hook (Sapindaceae) in a temperate forest of Garhwal Himalaya. Plants, 13(2): 183. https://doi.org/10.3390/plants13020183
  65. R Core Team., 2024. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  66. Reekie, E.G., Bazzaz, F.A., 2005. Reproductive allocation in plants. Burlington, USA: Elsevier Academic Press. 264 p.
  67. Rojas-Sandoval, J., 2022. Melia azedarach (Chinaberry). CABI International, CABI Compendium, cabicompendium. 33144. DOI:10.1079/cabicompendium.33144, https://www.cabidigitallibrary.org/doi/abs/10.1079/cabicompendium.33144
  68. Saini, H.K., Dhindsa, M.S., Toor, H.S., 1994. Food of the Rose-ringed Parakeet Psittacula krameri: a quantitative study. Journal of Bombay Natural History Society, 91 (1): 96–103.
  69. Sandhu, P.S., Dhindsa, M.S., 1982. Damage by Rose-ringed Parakeet and some other animal pests to almond at Ludhiana, Punjab. Indian Journal of Agricultural Sciences, 52 (11): 779–781.
  70. Schaefer, H.M., Schmidt, V., Winkler, H., 2003. Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos, 102: 318–328. https://doi.org/10.1034/j.1600-0706.2003.11796.x
  71. Schmidt, G.H., Ahmed, A.A.I., Breuer, M., 1997. Effect of Melia azedarach extract on larval development and reproduction parameters of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) (Lep., Noctuidae) Anz. Schädlingskd. Pflanzenschutz Umweltschutz, 70: 4–12. https://doi.org/10.1007/BF02009609
  72. Schooler, S.L., Johnson, M.D., Njoroge, P., Bean, W.T., 2020. Shade trees preserve avian insectivore biodiversity on coffee farms in a warming climate. Ecology and Evolution, 10: 12960–12972. https://doi.org/10.1002/ece3.6879
  73. Sharma, D., Paul, Y., 2013. Preliminary and pharmacological profile of Melia azedarach L.: an overview. Journal Applied Pharmaceutical Science, 3 (12): 133–138. DOI: 10.7324/JAPS.2013.31224
  74. Snook, L.K., Cámara-Cabrales, L., Kelty, M.J., 2005. Six years of fruit production by mahogany trees (Swietenia macrophylla King): patterns of variation and implications for sustainability. Forest Ecology and Management, 206 (1–3): 221–235. https://doi.org/10.1016/j.foreco.2004.11.003
  75. Solís, S., Lobo, J., Grimaldo, M., 2009. Phenology and recruitment of Caryocar costaricense (Caryocaraceae), an endemic tree species of Southern Central America. Revista de Biología Tropical, 57: 771–780. [cit. 2024-08-05]. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442009000300025&lng=en&tlng=en
  76. Somanathan, H., Borges, R.M., 2000. Influence of exploitation on population structure, spatial distribution and reproductive success of dioecious species in a fragmented cloud forest in India. Biological Conservation, 94: 243–256. https://doi.org/10.1016/S0006-3207(99)00170-6
  77. Suzuki, M., Umeki, K., Orman, O., Shibata, M., Tanaka, H., Iida, S., Nakashizuka, T., Masaki, T., 2019. When and why do trees begin to decrease their resource allocation to apical growth? The importance of the reproductive on-019-04477-y
  78. Terborgh, J., Nunez-Iturri, G., Pitman, N.C.A., Valverde, FHC., Paine, C.E.T., 2008. Tree recruitment in an empty forest. Ecology, 89: 1757–1768. https://doi.org/10.1890/07-0479.1
  79. Traveset, A., 1998. Effect of seed passage through vertebrate frugivores’ gut on germination: a review. Perspective in Plant Ecology, Evolution and Systematics, 1 (2): 151–190. https://doi.org/10.1078/1433-8319-00057
  80. Traveset, A., Riera, N., Mas, R.E., 2001. Passage through bird guts causes interspecific differences in seed germination characteristics. Functional Ecology, 15: 669–675. https://doi.org/10.1046/j.0269-8463.2001.00561.x
  81. Voigt, F.A., Farwig, N., Johnson, S.D., 2011. Interactions between the invasive tree Melia azedarach (Meliaceae) and native frugivores in South Africa. Journal of Tropical Ecology, 27: 355–363. DOI: 10.1017/S0266467410000702
  82. Yoshikawa, T., Kikuzawa, K., 2009. Pre-dispersal seed predation by a granivorous bird, the masked Grosbeak (Eophona personata), in two bird-dispersed Ulmaceae species. Journal of Ecology and Environment, 32 (3): 137–143. https://doi.org/10.5141/JEFB.2009.32.3.137
  83. Waggy, M.A., 2009. Melia azedarach. Fire Effects Information System. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.
  84. Wenk, E.H., Abramowics, K., Westoby, M., Falster, D.S., 2018. Investment in reproduction for 14 iteroparous perennials is large and associated with other life-history and functional traits. Journal of Ecology, 106: 1338–1348. https://doi.org/10.1111/1365-2745.12974
  85. Wenk, E.H., Falster, D.S., 2015. Quantifying and understanding reproductive allocation schedules in plants. Ecology and Evolution, 5: 5521–5538. https://doi.org/10.1002/ece3.1802C
  86. Wenny, D.G., 2001. Advantages of seed dispersal: A re-evaluation of directed dispersal. Evolutionary Ecology Research, 3 (1): 51–74.
  87. Wenny, D.G., Levey, D.J., 1998. Directed seed dispersal by bellbirds in a tropical cloud forest. Proceedings of the National Academy of Sciences USA, 95: 6204–6207. https://doi.org/10.1073/pnas.95.11.6204
  88. Westoby, M., 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199: 213–227. https://doi.org/10.1023/A:1004327224729
  89. Wheelwright, N.T., 1985. Fruit size, gape width, and the diets of fruit-eating birds. Ecology, 66: 808–818. https://doi.org/10.2307/1940542
  90. Willson, M.F., Irvine, A.K., Walsh, N.G., 1989. Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica, 21: 133–147. https://doi.org/10.2307/2388704
  91. Wright, S.J., Carrasco, C., Calderón, O., Paton, S., 1999. The El Niño southern oscillation,variable fruit production, and famine in a tropical forest. Ecology, 80: 1632–1647. https://doi.org/10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2
DOI: https://doi.org/10.2478/foecol-2025-0010 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 91 - 104
Submitted on: Sep 9, 2024
Accepted on: Dec 6, 2024
Published on: Jan 28, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Arun Sukumaran, Sarath Sasidharan, Vinod Prasad Khanduri, Suraj, Shweta Rawat, Vaisakhy Prem Chand, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.