References
- A
ffeld , K., Worner , S., Didham , R. K., Sullivan , J., Henderson , R., Olarte , J.M., Thorpe , S., Clunie , L., Early , J., Emberson , R., 2009. The invertebrate fauna of epiphyte mats in the canopy of northern rata (Myrtaceae: Metrosideros robusta A. Cunn.) on the West Coast of the South Island, New Zealand. New Zealand Journal of Zoology, 36 (2):177–202. - B
arnett , D.J., Arts , I.C., Penders , J., 2021. microViz: an R package for microbiome data visualization and statistics. Journal of Open Source Software, 6 (63): 3201. - B
ennik , R.M., 2009. The effects of honeybees on the biodiversity of manuka patches: a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Ecology. Massey University, Palmerston North, New Zealand. - B
eresford , R., Smith , G., Ganley , B., Campbell , R., 2019. Impacts of myrtle rust in New Zealand since its arrival in 2017. New Zealand Garden Journal, 22 (2): 5–10. - B
eresford , R., Soewarto , J., Somchit , C., Hasna , L., Ramos Romero , L., 2021. Vulnerability of New Zealand Myrtaceae species to natural infection by Austropuccinia psidii (myrtle rust). PFR SPTS No. 21702. 50 p. https://doi.org/10.34721/1v1s-qz14 - B
eresford , R.M., Shuey , L..S., Pegg , G.S., 2020. Symptom development and latent period of Austropuccinia psidii (myrtle rust) in relation to host species, temperature, and ontogenic resistance. Plant Pathology, 69 (3): 484–494. https://doi.org/10.1111/ppa.13145 - B
lack , A, Mark -Shadbolt , M., Garner , G., Green , J., Malcolm , T., Marsh , A., Ropata , H., Waipara , N., Wood , W., 2019. How an Indigenous community responded to the incursion and spread of myrtle rust (Austropuccinia psidii) that threatens culturally significant plant species – a case study from New Zealand. Pacific Conservation Biology, 25 (4): 348–354. - B
oyer , F., Mercier , C., Bonin , A., Le Bras , Y., Taberlet , P., Coissac , E., 2016. obitools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16 (1): 176–182. https://doi.org/10.1111/1755-0998.12428 - B
uxton , M.N., Anderson , B.J., Lord , J.M., 2022. Moths can transfer pollen between flowers under experimental conditions. New Zealand Journal of Ecology, 46 (1): 1–5. - B
uxton , M.N., Gaskett , A.C., Lord , J.M., Pattermore , D.E. 2022. A global review demonstrating the importance of nocturnal pollinators for crop plants. Journal of Applied Ecology, 59 (12): 2890–2901. https://doi.org/10.1111/1365-2664.14284 - C
amacho , C., Coulouris , G, Avagyan , V., Ma , N., Papadopoulos , J., Bealer , K., Madden , T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10 (1): 421. https://doi.org/10.1186/1471-2105-10-421 - C
annon , P., Friday , J.B., Harrington , T., Keith , L., Hughes , M., Hauff , R., Hughes , F., Perroy , R., Benitez , D., Roy , K., Peck , R., Smith , S., Luiz , B., Cordell , S., Giardina , C., Juzwik , J., Yelenik , S., Cook , Z., 2022. Chapter 15 - Rapid ‘Ōhi‘a Death in Hawai‘i. In Asiegbu, F.O., Kovalchuk, A. (eds). Forest microbiology. London: Academic Press, p. 267–289. https://doi.org/10.1016/B978-0-323-85042-1.00013-6 - C
arnegie , A.J., Kathuria , A., Pegg , G.S., Entwistle , P., Nagel , M., Giblin , F.R., 2016. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biological Invasions, 18 (1): 127–144. https://doi.org/10.1007/s10530-015-0996-y - C
hapman , E., Richards , A., Dupuis , J., 2023. The longhorn beetles (Coleoptera: Cerambycidae) of Kentucky with notes on larval hosts, adult nectar use, and semiochemical attraction. Zootaxa, 5229: 1–89. https://doi.org/10.11646/zootaxa.5229.1.1 - D
onovan , B., 1980. Interactions between native and introduced bees in New Zealand. New Zealand Journal of Ecology, 3: 104–116. - F
ensham , R.J., Radford -Smith , J., 2021. Unprecedented extinction of tree species by fungal disease. Biological Conservation, 261: 109276. https://doi.org/10.1016/j.biocon.2021.109276 - H
arper , L.R., Niemiller , M.L., Benito , J.B., Paddock , L.E., Knittle , E., Molano -Flores , B., Davis , M.A., 2023. BeeDNA: Microfluidic environmental DNA metabarcoding as a tool for connecting plant and pollinator communities. Environmental DNA, 5 (1): 191–211. https://doi.org/10.1002/edn3.370 - H
eine , E., 1937. Observations on the pollination of New Zealand flowering plants. Transactions and Proceedings of the Royal Society of New Zealand, 67: 133–148. - H
o , W.H., Baskarathevan , J., Griffin , R.L., Quinn , B.D., Alexander , B.J.R., Havell , D., Ward , N.A., Pathan , A.K., 2019. First report of myrtle rust caused by Austropuccinia psidii on Metrosideros kermadecensis on Raoul Island and on M. excelsa in Kerikeri, New Zealand. Plant Disease, 103 (8): 2128–2128. https://doi.org/10.1094/PDIS-12-18-2243-PDN - J
o , I., Bellingham , P.J., Mc Carthy , J.K., Easdale , T.A., Padamsee , M., Wiser , S.K., Richardson , S.J., 2022. Ecological importance of the Myrtaceae in New Zealand’s natural forests. Journal of Vegetation Science, 33 (1): e13106. https://doi.org/10.1111/jvs.13106 - J
ohnson , M.D., Barnes , M.A., Garrett , N.R., Clare , E.L., 2023. Answers blowing in the wind: detection of birds, mammals, and amphibians with airborne environmental DNA in a natural environment over a yearlong survey. Environmental DNA, 5 (2): 375–387. https://doi.org/10.1002/edn3.388 - J
ohnson , M.D., Katz , A.D., Davis , M.A., Tetzlaff , S., Ed -lund , D., Tomczyk , S., Molano -Flores , B-, Wilder , T., Sperry , J.H., 2023. Environmental DNA metabar-coding from flowers reveals arthropod pollinators, plant pests, parasites, and potential predator–prey interactions while revealing more arthropod diversity than camera traps. Environmental DNA, 5 (3): 551–569. https://doi.org/10.1002/edn3.411 - K
nop , E., Gerpe , C., Ryser , R., Hofmann , F., Menz , M.H.M., Trosch , S., Ursenbacher , S., Zoller , L., Fontaine , C., 2018. Rush hours in flower visitors over a day–night cycle. Insect Conservation and Diversity, 11 (3): 267–275. https://doi.org/10.1111/icad.12277 - K
olesik , P., Sutherland , R., Gillard , K., Gresham , B., Withers , T.M., 2021. A new species of Mycodiplosis gall midge (Diptera: Cecidomyiidae) feeding on myrtle rust Austropuccinia psidii. New Zealand Entomologist, 44 (2): 121–129 - M
c Kenzie , E, Buchanan , P, Johnston , P., 1999. Fungi on pohutukawa and other Metrosideros species in New Zealand. New Zealand Journal of Botany, 37 (2): 335–354. - M
c Murdie , P.J., Holmes , S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8 (4): e61217. https://doi.org/10.1371/journal.pone.0061217 - M
orse , D.H., 1986. Predatory risk to insects foraging at flowers. Oikos, 46: 223–228. - MPI, 2024. Species infected with myrtle rust in New Zeland » Myrtle Rust. Ministry for Primary Industries. [cit. 2024-11-05]. https://myrtlerust.org.nz/about-myrtle-rust/species-infected-with-myrtle-rust-in-new-zealand/
- N
epi , M., Grasso , D.A., Mancuso , S., 2018. Nectar in plant– insect mutualistic relationships: from food reward to partner manipulation. Frontiers in Plant Science, 9 (1063). https://doi.org/10.3389/fpls.2018.01063 - N
ewstrom , L., Robertson , A., 2005. Progress in understanding pollination systems in New Zealand. New Zealand Journal of Botany, 43: 1–59. - P
attemore , D.E., 2013. Recent advances in pollination biology in New Zealand. New Zealand Journal of Botany, 51 (3): 147–154. - PlantSynz, 2024. PlantSynz - Invertebrate herbivore biodiversity assessment tool: Database. [cited 2024-11-06]. https://plant-synz.landcareresearch.co.nz/ReportForm.aspx?RecordId=795&Type=P&ReportType=Adv&SortBy=Alpha&Biostatus=a,c,e,n
- P
rasad , M., Schmid , L.M.H., Marshall , A.J., Blanchon , D.J., Renner , M.A.M., Baba , Y., Padamsee , M.,de Lange , P.J., 2022 Ecological communities of Aotearoa / New Zealand species threatened by myrtle rust (Austropuccinia psidii (G. Winter) Beenken): the flora and mycobiota of the endemic genus Lophomyrtus Burret. Perspectives in Biosecurity, 7: 34–70. https://doi.org/10.34074/pibs.00703 - S
oewarto , J., Carriconde , F., Hugot , N., Bocs , S., Hamelin , C., Maggia , L., 2018. Impact of Austropuccinia psidii in New Caledonia, a biodiversity hotspot. Forest Pathology, 48 (2): e12402. https://doi.org/10.1111/efp.12402 - S
oewarto , J., Zhulanov , M., Sutherland , R., Bartlett , M., Todoroki , C., Ganley , B., Gillard , K., Miller , E., Donaldson , L., Fraser , S., Impact of myrtle rust on the reproductive biology of Lophomyrtus in Indigenous forests of Aotearoa New Zealand. (In Prep). - S
oewarto , J,. Giblin , F., Carnegie , A.J., 2019. Austropuccinia psidii (myrtle rust) global host list. Version 4. Australian Network for Plant Conservation, Canberra, ACT. [cit. 2024-10-09]. https://www.anpc.asn.au/myrtle-rust/ - S
tothut , M., Kühne , D., Ströbele , V., Mahla , L., Künzel , S., Krehenwinkel , H., 2024. Environmental DNA metabarcoding reliably recovers arthropod interactions which are frequently observed by video recordings of flowers. Environmental DNA, 6 (3): e550. https://doi.org/10.1002/edn3.550 - S
utherland , R., Bartlett , M., Smallman , T.W., Fraser , S., 2020. Review of biota associated with Lophomyrtus in Aotearoa New Zealand. Scion Research, Rotorua, New Zealand. - S
utherland , R., Soewarto , J., Beresford , R.M., Ganley , R.J., 2020. Monitoring Austropuccinia psidii (myrtle rust) on New Zealand Myrtaceae in native forest. New Zealand Journal of Ecology, 44 (2): 3414. - T
aberlet , P., Bonin , A., Zinger , L., Coissac , E., 2018. Environmental DNA: for biodiversity research and monitoring. Oxford: Oxford University Press. 268 p. - T
aberlet , P., Coissac , E., Pompanon , F., Gielly , .L, Miquel , C., Valentini , A., Vermat , T., Corthier , G., Broch -mann , C., Willerslev , E., 2007. Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35 (3): e14. https://doi.org/10.1093/nar/gkl938 - T
aberlet , P., Coissac , E., Pompanon , F., Brochmann , C., Willerslev , E., 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21 (8): 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x - T
eulon , D.A.J., Alipia , T.T., Ropata , H.T., Green , J.M., Viljanen -Rollinson S.L.H., Cromey . M.G., Arthur , K., Mac Diarmid , R.M., Waipara , N.W., Marsh , A.T., 2015. The threat of myrtle rust to Maori taonga plant species in New Zealand. New Zealand Plant Protection, 68: 66–75. https://doi.org/10.30843/nzpp.2015.68.5869. - T
homsen , P.F., Sigsgaard , E.E., 2019. Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecology and Evolution, 9 (4): 1665–1679. https://doi.org/10.1002/ece3.4809 - V
amos , E.E., Elbrecht , V., Leese , F., 2017. Short COI markers for freshwater macroinvertebrate metabarcoding. PeerJ Preprints, Report No.: 2167–9843. de Vega , C., Herrera , C.M., 2012. Relationships among nectar‐dwelling yeasts, flowers and ants: patterns and incidence on nectar traits. Oikos, 121 (11): 1878–1888.- W
ardhaugh , C.W., 2015. How many species of arthropods visit flowers? Arthropod-Plant Interactions, 9 (6): 547–565. https://doi.org/10.1007/s11829-015-9398-4