Have a personal or library account? Click to login
Environmental DNA profiling for detecting plant-insect interactions in endangered and native flora Cover

Environmental DNA profiling for detecting plant-insect interactions in endangered and native flora

Open Access
|Jan 2025

References

  1. Affeld, K., Worner, S., Didham, R. K., Sullivan, J., Henderson, R., Olarte, J.M., Thorpe, S., Clunie, L., Early, J., Emberson, R., 2009. The invertebrate fauna of epiphyte mats in the canopy of northern rata (Myrtaceae: Metrosideros robusta A. Cunn.) on the West Coast of the South Island, New Zealand. New Zealand Journal of Zoology, 36 (2):177–202.
  2. Barnett, D.J., Arts, I.C., Penders, J., 2021. microViz: an R package for microbiome data visualization and statistics. Journal of Open Source Software, 6 (63): 3201.
  3. Bennik, R.M., 2009. The effects of honeybees on the biodiversity of manuka patches: a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Ecology. Massey University, Palmerston North, New Zealand.
  4. Beresford, R., Smith, G., Ganley, B., Campbell, R., 2019. Impacts of myrtle rust in New Zealand since its arrival in 2017. New Zealand Garden Journal, 22 (2): 5–10.
  5. Beresford, R., Soewarto, J., Somchit, C., Hasna, L., Ramos Romero, L., 2021. Vulnerability of New Zealand Myrtaceae species to natural infection by Austropuccinia psidii (myrtle rust). PFR SPTS No. 21702. 50 p. https://doi.org/10.34721/1v1s-qz14
  6. Beresford, R.M., Shuey, L..S., Pegg, G.S., 2020. Symptom development and latent period of Austropuccinia psidii (myrtle rust) in relation to host species, temperature, and ontogenic resistance. Plant Pathology, 69 (3): 484–494. https://doi.org/10.1111/ppa.13145
  7. Black, A, Mark-Shadbolt, M., Garner, G., Green, J., Malcolm, T., Marsh, A., Ropata, H., Waipara, N., Wood, W., 2019. How an Indigenous community responded to the incursion and spread of myrtle rust (Austropuccinia psidii) that threatens culturally significant plant species – a case study from New Zealand. Pacific Conservation Biology, 25 (4): 348–354.
  8. Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., Coissac, E., 2016. obitools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16 (1): 176–182. https://doi.org/10.1111/1755-0998.12428
  9. Buxton, M.N., Anderson, B.J., Lord, J.M., 2022. Moths can transfer pollen between flowers under experimental conditions. New Zealand Journal of Ecology, 46 (1): 1–5.
  10. Buxton, M.N., Gaskett, A.C., Lord, J.M., Pattermore, D.E. 2022. A global review demonstrating the importance of nocturnal pollinators for crop plants. Journal of Applied Ecology, 59 (12): 2890–2901. https://doi.org/10.1111/1365-2664.14284
  11. Camacho, C., Coulouris, G, Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10 (1): 421. https://doi.org/10.1186/1471-2105-10-421
  12. Cannon, P., Friday, J.B., Harrington, T., Keith, L., Hughes, M., Hauff, R., Hughes, F., Perroy, R., Benitez, D., Roy, K., Peck, R., Smith, S., Luiz, B., Cordell, S., Giardina, C., Juzwik, J., Yelenik, S., Cook, Z., 2022. Chapter 15 - Rapid ‘Ōhi‘a Death in Hawai‘i. In Asiegbu, F.O., Kovalchuk, A. (eds). Forest microbiology. London: Academic Press, p. 267–289. https://doi.org/10.1016/B978-0-323-85042-1.00013-6
  13. Carnegie, A.J., Kathuria, A., Pegg, G.S., Entwistle, P., Nagel, M., Giblin, F.R., 2016. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biological Invasions, 18 (1): 127–144. https://doi.org/10.1007/s10530-015-0996-y
  14. Chapman, E., Richards, A., Dupuis, J., 2023. The longhorn beetles (Coleoptera: Cerambycidae) of Kentucky with notes on larval hosts, adult nectar use, and semiochemical attraction. Zootaxa, 5229: 1–89. https://doi.org/10.11646/zootaxa.5229.1.1
  15. Donovan, B., 1980. Interactions between native and introduced bees in New Zealand. New Zealand Journal of Ecology, 3: 104–116.
  16. Fensham, R.J., Radford-Smith, J., 2021. Unprecedented extinction of tree species by fungal disease. Biological Conservation, 261: 109276. https://doi.org/10.1016/j.biocon.2021.109276
  17. Harper, L.R., Niemiller, M.L., Benito, J.B., Paddock, L.E., Knittle, E., Molano-Flores, B., Davis, M.A., 2023. BeeDNA: Microfluidic environmental DNA metabarcoding as a tool for connecting plant and pollinator communities. Environmental DNA, 5 (1): 191–211. https://doi.org/10.1002/edn3.370
  18. Heine, E., 1937. Observations on the pollination of New Zealand flowering plants. Transactions and Proceedings of the Royal Society of New Zealand, 67: 133–148.
  19. Ho, W.H., Baskarathevan, J., Griffin, R.L., Quinn, B.D., Alexander, B.J.R., Havell, D., Ward, N.A., Pathan, A.K., 2019. First report of myrtle rust caused by Austropuccinia psidii on Metrosideros kermadecensis on Raoul Island and on M. excelsa in Kerikeri, New Zealand. Plant Disease, 103 (8): 2128–2128. https://doi.org/10.1094/PDIS-12-18-2243-PDN
  20. Jo, I., Bellingham, P.J., McCarthy, J.K., Easdale, T.A., Padamsee, M., Wiser, S.K., Richardson, S.J., 2022. Ecological importance of the Myrtaceae in New Zealand’s natural forests. Journal of Vegetation Science, 33 (1): e13106. https://doi.org/10.1111/jvs.13106
  21. Johnson, M.D., Barnes, M.A., Garrett, N.R., Clare, E.L., 2023. Answers blowing in the wind: detection of birds, mammals, and amphibians with airborne environmental DNA in a natural environment over a yearlong survey. Environmental DNA, 5 (2): 375–387. https://doi.org/10.1002/edn3.388
  22. Johnson, M.D., Katz, A.D., Davis, M.A., Tetzlaff, S., Ed-lund, D., Tomczyk, S., Molano-Flores, B-, Wilder, T., Sperry, J.H., 2023. Environmental DNA metabar-coding from flowers reveals arthropod pollinators, plant pests, parasites, and potential predator–prey interactions while revealing more arthropod diversity than camera traps. Environmental DNA, 5 (3): 551–569. https://doi.org/10.1002/edn3.411
  23. Knop, E., Gerpe, C., Ryser, R., Hofmann, F., Menz, M.H.M., Trosch, S., Ursenbacher, S., Zoller, L., Fontaine, C., 2018. Rush hours in flower visitors over a day–night cycle. Insect Conservation and Diversity, 11 (3): 267–275. https://doi.org/10.1111/icad.12277
  24. Kolesik, P., Sutherland, R., Gillard, K., Gresham, B., Withers, T.M., 2021. A new species of Mycodiplosis gall midge (Diptera: Cecidomyiidae) feeding on myrtle rust Austropuccinia psidii. New Zealand Entomologist, 44 (2): 121–129
  25. McKenzie, E, Buchanan, P, Johnston, P., 1999. Fungi on pohutukawa and other Metrosideros species in New Zealand. New Zealand Journal of Botany, 37 (2): 335–354.
  26. McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8 (4): e61217. https://doi.org/10.1371/journal.pone.0061217
  27. Morse, D.H., 1986. Predatory risk to insects foraging at flowers. Oikos, 46: 223–228.
  28. MPI, 2024. Species infected with myrtle rust in New Zeland » Myrtle Rust. Ministry for Primary Industries. [cit. 2024-11-05]. https://myrtlerust.org.nz/about-myrtle-rust/species-infected-with-myrtle-rust-in-new-zealand/
  29. Nepi, M., Grasso, D.A., Mancuso, S., 2018. Nectar in plant– insect mutualistic relationships: from food reward to partner manipulation. Frontiers in Plant Science, 9 (1063). https://doi.org/10.3389/fpls.2018.01063
  30. Newstrom, L., Robertson, A., 2005. Progress in understanding pollination systems in New Zealand. New Zealand Journal of Botany, 43: 1–59.
  31. Pattemore, D.E., 2013. Recent advances in pollination biology in New Zealand. New Zealand Journal of Botany, 51 (3): 147–154.
  32. PlantSynz, 2024. PlantSynz - Invertebrate herbivore biodiversity assessment tool: Database. [cited 2024-11-06]. https://plant-synz.landcareresearch.co.nz/ReportForm.aspx?RecordId=795&Type=P&ReportType=Adv&SortBy=Alpha&Biostatus=a,c,e,n
  33. Prasad, M., Schmid, L.M.H., Marshall, A.J., Blanchon, D.J., Renner, M.A.M., Baba, Y., Padamsee, M., de Lange, P.J., 2022 Ecological communities of Aotearoa / New Zealand species threatened by myrtle rust (Austropuccinia psidii (G. Winter) Beenken): the flora and mycobiota of the endemic genus Lophomyrtus Burret. Perspectives in Biosecurity, 7: 34–70. https://doi.org/10.34074/pibs.00703
  34. Soewarto, J., Carriconde, F., Hugot, N., Bocs, S., Hamelin, C., Maggia, L., 2018. Impact of Austropuccinia psidii in New Caledonia, a biodiversity hotspot. Forest Pathology, 48 (2): e12402. https://doi.org/10.1111/efp.12402
  35. Soewarto, J., Zhulanov, M., Sutherland, R., Bartlett, M., Todoroki, C., Ganley, B., Gillard, K., Miller, E., Donaldson, L., Fraser, S., Impact of myrtle rust on the reproductive biology of Lophomyrtus in Indigenous forests of Aotearoa New Zealand. (In Prep).
  36. Soewarto, J,. Giblin, F., Carnegie, A.J., 2019. Austropuccinia psidii (myrtle rust) global host list. Version 4. Australian Network for Plant Conservation, Canberra, ACT. [cit. 2024-10-09]. https://www.anpc.asn.au/myrtle-rust/
  37. Stothut, M., Kühne, D., Ströbele, V., Mahla, L., Künzel, S., Krehenwinkel, H., 2024. Environmental DNA metabarcoding reliably recovers arthropod interactions which are frequently observed by video recordings of flowers. Environmental DNA, 6 (3): e550. https://doi.org/10.1002/edn3.550
  38. Sutherland, R., Bartlett, M., Smallman, T.W., Fraser, S., 2020. Review of biota associated with Lophomyrtus in Aotearoa New Zealand. Scion Research, Rotorua, New Zealand.
  39. Sutherland, R., Soewarto, J., Beresford, R.M., Ganley, R.J., 2020. Monitoring Austropuccinia psidii (myrtle rust) on New Zealand Myrtaceae in native forest. New Zealand Journal of Ecology, 44 (2): 3414.
  40. Taberlet, P., Bonin, A., Zinger, L., Coissac, E., 2018. Environmental DNA: for biodiversity research and monitoring. Oxford: Oxford University Press. 268 p.
  41. Taberlet, P., Coissac, E., Pompanon, F., Gielly, .L, Miquel, C., Valentini, A., Vermat, T., Corthier, G., Broch-mann, C., Willerslev, E., 2007. Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35 (3): e14. https://doi.org/10.1093/nar/gkl938
  42. Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., Willerslev, E., 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21 (8): 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x
  43. Teulon, D.A.J., Alipia, T.T., Ropata, H.T., Green, J.M., Viljanen-Rollinson S.L.H., Cromey. M.G., Arthur, K., MacDiarmid, R.M., Waipara, N.W., Marsh, A.T., 2015. The threat of myrtle rust to Maori taonga plant species in New Zealand. New Zealand Plant Protection, 68: 66–75. https://doi.org/10.30843/nzpp.2015.68.5869.
  44. Thomsen, P.F., Sigsgaard, E.E., 2019. Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecology and Evolution, 9 (4): 1665–1679. https://doi.org/10.1002/ece3.4809
  45. Vamos, E.E., Elbrecht, V., Leese, F., 2017. Short COI markers for freshwater macroinvertebrate metabarcoding. PeerJ Preprints, Report No.: 2167–9843.
  46. de Vega, C., Herrera, C.M., 2012. Relationships among nectar‐dwelling yeasts, flowers and ants: patterns and incidence on nectar traits. Oikos, 121 (11): 1878–1888.
  47. Wardhaugh, C.W., 2015. How many species of arthropods visit flowers? Arthropod-Plant Interactions, 9 (6): 547–565. https://doi.org/10.1007/s11829-015-9398-4
DOI: https://doi.org/10.2478/foecol-2025-0009 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 82 - 90
Submitted on: Nov 26, 2024
Accepted on: Jan 15, 2025
Published on: Jan 28, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Andrew Pugh, Max Trower, Celine Mercier, Michael Bartlett, Roanne Sutherland, Andrew Cridge, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.