Have a personal or library account? Click to login
Atmospheric microplastic accumulation in Ramalina celastri (Sprengel) Krog & Swinscow Thalli: a transplant study across different levels of urbanization Cover

Atmospheric microplastic accumulation in Ramalina celastri (Sprengel) Krog & Swinscow Thalli: a transplant study across different levels of urbanization

Open Access
|Jan 2025

References

  1. Abbasi, S., Jaafarzadeh, N., Zahedi, A., Ravanbakhsh, M., Abbaszadeh, S., Turner, A., 2023. Microplastics in the atmosphere of Ahvaz City, Iran. Journal of Environmental Sciences, 126: 95–102. https://doi.org/10.1016/j.jes.2022.02.044
  2. Abbasi, S., Keshavarzi, B., Moore, F., Delshab, H., Soltani, N., Sorooshian, A., 2017. Investigation of microrubbers, microplastics and heavy metals in street dust: a study in Bushehr city, Iran. Environmental Earth Sciences, 76: 798. https://doi.org/10.1007/s12665-017-7137-0
  3. Allen, S., Allen, D., Phoenix, V.R., Leroux, G., Jiménez, P.D., Simonneau, A., Binet, S., Galop, D., 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12: 339–344. https://doi.org/10.1038/s41561-019-0335-5
  4. Almeida, C.C.S., Barreto, T.N.A., De Souza Lira, E.B., Lorena, E.M.G., Santos, I.G.S., Bezerra, A.P.X.G., 2017. Bioindicators of air quality species|Bioindicadores de espécies de qualidade do ar. Revista Geama, 3 (2): 94–102.
  5. Bonvecchi, V.E, Serafini, M.C, Zuleta, G., 2006. Fragmentación del paisaje en el partido de Luján, provincia de Buenos Aires: patrones y procesos [Landscape fragmentation in the Luján district, Buenos Aires province: patterns and processes]. Selper, 23: 58–72 (In Spanish).
  6. Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., Chen, Q., 2017. Characteristics of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environmental Science and Pollution Research, 24 (32): 24928–24935. https://doi.org/10.1007/s11356-017-0116-x
  7. Çobanoğlu, G., Özen, E., 2024. Detection of atmospheric microplastics accumulated in Xanthoria parietina: a lichen biomonitoring study on the Asian side of Istanbul. International Journal of Environmental Research, 18 (4): 65. https://doi.org/10.1007/s41742-024-00596-4
  8. Conti, M.E., Cecchetti, G., 2001. Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environmental Pollution, 114 (3): 471–492. https://doi.org/10.1016/S0269-7491(00)00224-4
  9. Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B., 2016. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Marine Pollution Bulletin, 104 (1-2): 290–293. https://doi.org/10.1016/j.marpolbul.2016.01.006
  10. Estrabou, C., Filippini, E., Soria, J.P., Schelotto, G., Rodríguez, J.M., 2011. Air quality monitoring system using lichens as bioindicators in Central Argentina. Environmental Monitoring and Assessment, 182 (1-4): 375–383. https://doi.org/10.1007/s10661-011-1882-4
  11. García, R., Gollo, M., Villagra, E., Gomez, J., 2023. Especies de hongos liquenizados asociadas a diferentes usos de suelo en el partido de Luján (Provincia de Buenos Aires, Argentina) [Lichenized fungal species associated with different land uses in the Luján district (Buenos Aires Province, Argentina)]. Revista del Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia, 25 (2): 165–175. DOI: 10.22179/REVMACN.25.780
  12. Gascon, C.N., Almazol, A.E., Garcia, R.C., Vitoriano, M.M., 2023. Diversity and spatial distribution of native bees in Mt. Banahaw de Lucban, Philippines. Folia Oecologica, 50 (1): 44–54. https://doi.org/10.2478/foecol-2023-0003
  13. Gilbert, O., 1980. Effect of land-use on terricolous lichens. The Lichenologist, 12 (1): 117–124. DOI: 10.1017/S0024282980000047
  14. Gollo, M., Villagra, E., Gomez, J., 2024. Evaluación de la contaminación por microplásticos en el liquen Candelaria concolor (Dicks) Arnold, 1879: un estudio de caso sobre el Efecto de la Ruralidad [Assessing microplastic contamination in the lichen Candelaria concolor (Dicks) Arnold, 1879: a case study on the Rurality Effect]. Revista del Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia, 26 (2): 147–154. DOI: 10.22179/REVMACN.26.848
  15. Gollo, M.S., Rodríguez, J.M., Pighín, A.F., Villagra, E., Ferro, J., Gomez, J.J., 2023. Micro y mesoplásticos en la infusión “té de la piedra” [Micro and mesoplastics in “stone tea” infusion]. Glalia. Revista Electrónica del Grupo Latinoamericano de Liquenólogos, 9 (1): 35–44.
  16. Gomez, J., Nistal, A., Villagra, E., Detteler, M.A., Vazquez, F.A., 2023. First record of Hyperphyscia coralloides (L.) Scutari growing on PET plastic within a fruit crops plot and its implications. Folia Oecologica, 50 (2): 204–206. https://doi.org/10.2478/foecol-2023-0019
  17. Gomez, J., Pighin, A., Gollo, M., Nistal, A., Villagra, E., 2023. Primera aproximación experimental referente a la acumulación y deposición de microplásticos en líquenes [First experimental approach regarding the accumulation and deposition of microplastics in lichens]. Revista Internacional de Contaminación Ambiental, 39: 557–567. https://doi.org/10.20937/RICA.54843
  18. Herrera, A., Garrido-Amador, P., Martínez, I., Samper, M. D., López-Martínez, J., Gómez, M., Packard, T.T., 2018. Novel methodology to isolate microplastics from vegetal-rich samples. Marine Pollution Bulletin, 129 (1): 61–69. https://doi.org/10.1016/j.marpolbul.2018.02.015
  19. Huang, X., Chen, Y., Meng, Y., Liu, G., Yang, M., 2022. Are we ignoring the role of urban forests in intercepting atmospheric microplastics? Journal of Hazardous Materials, 436: 129096. https://doi.org/10.1016/j.jhazmat.2022.129096.
  20. Huang, Y., Liu, Q., Jia, W., Yan, C., Wang, J., 2020. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260: 114096.
  21. Jafarova, M., Contardo, T., Aherne, J., Loppi, S., 2022. Lichen biomonitoring of airborne microplastics in Milan (N Italy). Biology, 11 (12): 1815. https://doi.org/10.3390/biology11121815
  22. Jasan, R.C., Verburg, T.G., Wolterbeek, H.T., Plá, R.R., Pignata M.L., 2004. On the use of the lichen Ramalina celastri (Spreng.) Krog. & Swinsc. as an indicator of atmospheric pollution in the province of Córdoba, Argentina, considering both lichen physiological parameters and element concentrations. Journal of Radio-analytical and Nuclear Chemistry, 259 (1): 93–97. https://doi.org/10.1023/B:JRNC.0000015812.46333.41
  23. Käffer, M.I, De Azevedo Martins, S.M., Alves, C., Pereira, V.C., Fachel, J., Vargas, V.M.F., 2011. Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecological Indicators, 11 (5): 1319–1332. https://doi.org/10.1016/j.ecolind.2011.02.006
  24. Khodabakhshloo, N., Abbasi, S., Oleszczuk, P., Turner, A., 2024. Biomonitoring of airborne microplastics and microrubbers in Shiraz, Iran, using lichens and moss. Environmental Geochemistry and Health, 46: 244. https://doi.org/10.1007/s10653-024-01977-6
  25. Land Use Code, 2019. Luján, Bs. As., Argentina. [cit. 2024-03-05]. http://www.lujan.gob.ar/wp-content/uploads/2019/12/COU_WEB.pdf
  26. Lares, M., Ncibi, M.C., Sillanpää, Ma., Sillanpää, M., 2019. Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples. Environmental Science and Pollution Research, 26: 12109–12122. https://doi.org/10.1007/s11356-019-04584-6
  27. Lato, K.A., Thorne, L.H., Fuirst, M., Brownawell, B.J., 2021. Microplastic abundance in gull nests in relation to urbanization. Marine Pollution Bulletin, 164: 112058. https://doi.org/10.1016/j.marpolbul.2021.112058
  28. Lloret, J., Pedrosa-Pamies, R., Vandal, N., Rorty, R., Ritchie, M., McGuire, C., Valiela, I., 2021. Salt marsh sediments act as sinks for microplastics and reveal effects of current and historical land use changes. Environmental Advances, 4: 100060. https://doi.org/10.1016/j.envadv.2021.100060
  29. Loppi, S., Roblin, B., Paoli, L., Aherne, J., 2021. Accumulation of airborne microplastics in lichens from a landfill dumping site (Italy). Scientific Reports, 11 (1): 1–5. https://doi.org/10.1038/s41598-021-84251-4
  30. Lusher, A.L., Welden, N.A., Sobral, P., Cole, M., 2020. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. In Analysis of nanoplastics and microplastics in food. CRC Press, p. 119–148.
  31. Masura, J., Baker, J.E., Foster, G.D., Arthur, C., Herring, C., 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum, NOS-OR&R48. Silver Spring: NOAA Marine Debris Division. 31 p.
  32. Mateos, A.C., González, C.M., 2016. Physiological response and sulfur accumulation in the biomonitor Ramalina celastri in relation to the concentrations of SO2 and NO2 in urban environments. Microchemical Journal, 125: 116–123. https://doi.org/10.1016/j.microc.2015.11.025
  33. O’brien, S., Rauert, C., Ribeiro, F., Okoffo, E.D., Burrouws, S.D., O’brien, J.W., Xianyu, W., Wright, S.L., Thomas, K.V., 2023. There’s something in the air: a review of sources, prevalence and behaviour of microplastics in the atmosphere. Science of the Total Environment, 874: 162193. https://doi.org/10.1016/j.scitotenv.2023.162193
  34. Pedreira, P.A, Penon, E., Borgnia M., 2017. Descortezado en forestales producido por la ardilla introducida Callosciurus erythraeus (Sciuridae) en Argentina [Bark stripping caused by the introduced squirrel Callosciurus erythraeus (Sciuridae) in Argentina]. Bosque (Valdivia), 38 (2): 415–420. DOI:10.4067/s0717-92002017000200019
  35. Peng, J., Wang, J., Cai, L., 2017. Current understanding of microplastics in the environment: occurrence, fate, risks, and what we should do. Integrated Environmental Assessment and Management, 13 (3): 476–482. https://doi.org/10.1002/ieam.1912
  36. Pignata, M.L., González, C.M., Wannaz, E.D., Carreras, H.A., Gudiño, G.L., Martínez, M.S., 2004. Biomonitoring of air quality employing in situ Ramalina celastri in Argentina. International Journal of Environmental Pollution, 22 (4): 409–429. https://doi.org/10.1504/IJEP.2004.005678
  37. Pinho, P., Bergamini, A., Carvalho, P., Branquinho, C., Stofer, S., Schidegger, C., Máguas C., 2012. Lichen functional groups as ecological indicators of the effects of land-use in Mediterranean ecosystems. Ecological Indicators, 15 (1): 36–42. https://doi.org/10.1016/j.ecolind.2011.09.022
  38. Roblin, B., Aherne, J., 2020. Moss as a biomonitor for the atmospheric deposition of anthropogenic microfibres. Science of the Total Environment, 715: 136973. https://doi.org/10.1016/j.scitotenv.2020.136973
  39. Rodríguez, J.M, Estrabou, C., Filippini, E., Díaz Domínguez, R.E. (eds), 2021. Liquenes del centro de Argentina [Lichens of central Argentina]. Córdoba, Argentina: Editorial de la UNC. 106 p.
  40. Sett, R., Kundu, M., 2016. Epiphytic lichens: their usefulness as bio-indicators of air pollution. Donnish Journal of Research in Environmental Studies, 3 (3): 017–024.
  41. Stanton, T., Johnson, M., Nathanail, P., Macnaughan, W., Gomes, R.L., 2019. Freshwater and airborne textile fibre populations are dominated by ‘natural’, not micro-plastic, fibres. Science of the Total Environment, 666: 377–389. https://doi.org/10.1016/j.scitotenv.2019.02.278
  42. Stofer, S., Bergamini, A., Aragón, G., Carvalho, P., Coppins, B., Davey, S., Dietrich, M., Farkas, E., Karkkainen, K., Keller, C., Lokos, L., Lommi, S., Máguas, C., Mitchell, R., Pinho, P., Rico, V.J., Truscott, A.M., Wolseley, P.A., Watt, A., Scheidegger, C., 2006. Species richness of lichen functional groups in relation to land use intensity. The Lichenologist, 38 (4): 331–353. https://doi.org/10.1017/S0024282906006207
  43. Szymczyk, R., Zalewska, A., 2008. Lichens in the rural landscape of the Warmia Plain. Acta Mycologica, 43 (2): 215–230.
  44. Tatsi, D., Bucci, S., Bhowmick, T., Guettler, J., Bakels, L., Bagheri, G., Stohl, A., 2023. Shape matters: long-range transport of microplastic fibers in the atmosphere. Environmental Science and Technology, 58 (1): 671–682.
  45. Taurozzi, D., Gallitelli, L., Cesarini, G., Romano, S., Orsini, M., Scalici, M., 2024. Passive biomonitoring of airborne microplastics using lichens: a comparison between urban, natural and protected environments. Environment International, 187: 108707. https://doi.org/10.1016/j.envint.2024.108707
  46. Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., Russell, A.E., 2004. Lost at sea: where is all the plastic? Science, 304: 838–838. DOI: 10.1126/science.1094559
  47. Wang, T., Niu, S., Wu, J., Yu, J., 2022. Seasonal and daily occurrence of microplastic pollution in urban road dust. Journal of Cleaner Production, 380: 135025.
  48. Way, C., Hudson, M.D., Williams, I.D., Langley, G.J., 2022. Evidence of underestimation in microplastic research: a meta-analysis of recovery rate studies. Science of the Total Environment, 805: 150227. https://doi.org/10.1016/j.scitotenv.2021.150227
  49. Wenzel, M., Schoettl J., Pruin, L., Fischer, B., Wolf C., Kube, C., Renner, G., Schram J., Schmidt, T.C., Tuerk, J., 2023. Determination of atmospherically deposited microplastics in moss: method development and performance evaluation. Green Analytical Chemistry, 7: 100078. https://doi.org/10.1016/j.greeac.2023.100078
  50. Windsor, F.M., Tilley, R.M., Tyler, C.R., Ormerod, S.J., 2018. Microplastic ingestion by riverine macroinvertebrates. Science of the Total Environment, 646: 68–74. https://doi.org/10.1016/j.scitotenv.2018.07.271
  51. Wolseley, P., Stofer, S., Mitchell, R., Truscott, A., Van-bergen, A., Chimonides, J., Scheidegger, C., 2006. Variation of lichen communities with landuse in Aber deenshire, UK. The Lichenologist, 38 (4): 307–322. https://doi.org/10.1017/S0024282906006190
  52. Wright, S.L., Ulke, J., Font, A., Chan, K.L.A., Kelly, F.J., 2020. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environment International, 136: 105411. https://doi.org/10.1016/j.envint.2019.105411
DOI: https://doi.org/10.2478/foecol-2025-0007 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 62 - 69
Submitted on: Mar 12, 2024
Accepted on: Dec 20, 2024
Published on: Jan 28, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Maira S. Gollo, Elizabeth L.B. Villagra, Jonatan J. Gomez, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.