Have a personal or library account? Click to login
Effect of climate change on potential distribution of Dactylorhiza hatagirea (D. Don) Soó in the twenty-first century across the north-western Himalayas Cover

Effect of climate change on potential distribution of Dactylorhiza hatagirea (D. Don) Soó in the twenty-first century across the north-western Himalayas

By: Javaid M. Dad and  Irfan Rashid  
Open Access
|Jan 2025

References

  1. Abolmaali, R., Tarkesh, M., Bashari, H., 2018. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43: 116–123. https://doi.org/10.1016/j.ecoinf.2017.10.002
  2. Adhikari, D., Reshi, Z., Datta, B.K., Samant, S.S., Chettri, A., Upadhaya, K., Shah, M.A., Singh, P.P., Tiwary, T., Majumdar, K., Pradhan, A., Thakur, M.L., Salam, N., Zahoor, Z., Agarwal., A., Khokhar, D., Vishwanath, 2008. Conservation through in vitro propagation of a critically endangered medicinal plant, Dactylorhiza hatagirea (D. Don) Soó. In Reddy, M.V. (eds). Wildlife biodiversity conservation. Daya Publishing House, p. 294–299.
  3. Akhter, C., Khuroo, A.A., Dar, G.H., Khan, Z.S., Malik, A.H., 2011. An updated checklist of orchids in the Indian Himalayan State of Jammu and Kashmir. Pleione, 5 (1): 1–9.
  4. Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43 (6): 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  5. Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., Schirone, B., 2017. Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environment Change, 17: 143–156. https://doi.org/10.1007/s10113-016-0987-2
  6. Ayan, S., Bugday, E., Varol T., Ozel, B.H., Thurm, E.A., 2022. Effect of climate change on potential distribution of oriental beech (Fagus orientalis Lipsky.) in the twenty frst century in Turkey. Theoretical and Applied Climatology, 148: 165–177. https://doi.org/10.1007/s00704-022-03940-w
  7. Baskin, C.C., Baskin, J.M., 1998. Seeds: ecology, biogeography, and, evolution of dormancy and germination. San Diego: Academic Press. 666 p.
  8. Bhatt, A., Joishi, S.K., Garola, S., 2005. Dactylorhiza hatagirea (D. Don) Soó - a west Himalayan orchid in Peril. Current Science, 89: 610–612. https://www.jstor.org/stable/24111155
  9. CBD, 2019. Biodiversity and the 2030 Agenda for sustainable development. Technical note. Montréal, Quebec, Canada: Secretariat of the Convention on Biological Diversity. [cit. 2024-07-22]. https:/www.cbd.int/development/doc/biodiversity-2030-agenda-technical-note-en.pdf.
  10. Chauhan, R.S., Nautiyal, M.C., Vashistha, R.K., Prasad, P., 2014. Morpho-biochemical variability and selection strategies for the germplasm of Dactylorhiza hatagirea (D. Don) Soó: an endangered medicinal orchid. Journal of Botany, 2014: article ID 869167, 5 p. https://doi.org/10.1155/2014/869167
  11. Chugh, S., Guha, S., Rao, I.U., 2009. Micropropagation of orchids: a review on the potential of different ex-plants. Scientia Horticulture, 122: 507–507. https://doi.org/10.1016/j.scienta.2009.07.016
  12. Dad, J., 2019. Phytodiversity and medicinal plant distribution in pasturelands of North Western Himalaya in relation to environmental gradients. Journal of Mountain Science, 16 (4): 884–897. https://doi.org/10.1007/s11629-018-5104-1
  13. Dad, J.M., Khan, A.B., 2011. Threatened medicinal plants of Gurez valley, Kashmir Himalayas: distribution pattern and current conservation status. International Journal of Biodiversity Science, Ecosystem Services and Management, 7 (1): 20–26.
  14. Dhiman, N., Sharma, N.K., Thapa, P., Sharma, I., Swarnkar, M.K., Chawla, A., Shankar, R., Bhattacharya, A., 2019. De novo transcriptome provides insights into the growth behavior and resveratrol and trans-stilbenes biosynthesis in Dactylorhiza hatagirea - an endangered alpine terrestrial orchid of western Himalaya. Scientific Reports, 9: 13133. https://doi.org/10.1038/s41598-019-49446-w
  15. Dhyani, P.P., Kala, C.P., 2005. Current research on medicinal plants: five lesser-known but valuable aspects. Current Science, 88 (3): 335
  16. Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D., Bacchetta, G., 2016. The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. Journal of Nature Conservation, 33: 1–9. https://doi.org/10.1016/j.jnc.2016.06.001
  17. Gebrewahid, Y., Abrehe, S., Meresa, E., 2020. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecological Processes, 9: article number 6 (2020). https://doi.org/10.1186/s13717-019-0210-8
  18. Goraya, G.S., Ved, D.K., 2017. Medicinal plants in India: an assessment of their demand and supply. New Delhi: National Medicinal Plants Board, Ministry of AYUSH, Government of India; Dehradun: Indian Council of Forestry Research and Education. 395 p.
  19. Griffies, S., Winton, M., Donner, L., Horowitz, L., Downes, S., Farneti, R., Gnanadesikan, A., Hurl in, W., Lee H., Liang, Z., Palter, J., 2011. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. Journal of Climatology, 24 (13): 3520–3544. https://doi.org/10.1175/2011JCLI3964.1
  20. Hoffmann, A.A., Rymer, P.D., Byrne, M., Ruthrof, K.X., Whinam, J., McGeoch, M., Bergstrom, D.M., Guerin, G.R., Sparrow, B., Joseph, L., Hill, S.J., Andrew, N.R., Camac, J., Bell, N., Riegler, M., Gardner, J.L., Williams, S.E., 2019. Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. Australian Ecology, 44: 3–27. https://doi.org/10.1111/aec.12674
  21. IPCC, 2014. Climate Change 2014. Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., Meyer, L.A(eds)]. IPCC, Switzerland. 151 p.
  22. IUCN. 2004. National register of medicinal and aromatic plants. International Union for Nature Conservation Nepal, Kathmandu, Nepal.
  23. Jalal, J.S., Rawat, G.S., 2009. Habitat studies for conservation of medicinal orchids of Uttarakhand, Western Himalaya. African Journal of Plant Science, 3 (9): 200–204.
  24. Kaky, M., Nolan, V., Alatawi, A., Gilbert, F., 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Ecological Informatics, 60: 101150. https://doi.org/10.1016/j.ecoinf.2020.101150
  25. Lughadha, E. N., Bachman, S.P., Leão, T.C.C., Forest, F., Halley, J.M., Moat, J., Acedo, C., Bacon, K.L., Brewer, R.F.A., Gâteblé, G., Gonçalves, S.C., Govaerts, R., Hollingsworth, P.M., Krisai-Greilhuber, I., de Lirio, E.J., Moore, P.G.P., Negrão, R., Onana, J.M., Rajaovelona, L.R., Razanajatovo, H., Reich, P.B., Richards, S.L., Rivers, M.C., Cooper, A., Iganci, J., Lewis, G.P., Smidt, E.C., Antonelli, A., Mueller, G.M., Walker, B.E., 2020. Extinction risk and threats to plants and fungi. Plants People Planet, 2: 389–408. https://doi.org/10.1002/ppp3.10146
  26. Marco, M.D., Harwood, T.D., Hoskins, A.J., Ware, C., Hill, S.L.L., Ferrier, S., 2019. Projecting impacts of global climate and land‐use scenarios on plant bio-diversity using compositional‐turnover modelling. Global Change Biology, 25 (8): 2763–2778. https://doi.org/10.1111/gcb.14663
  27. Matteodo, M., Wipf, S., Stöckli, V., Rixen, C., Vittoz, P., 2013. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environment Research Letters, 8 (2): 024043. https://doi.org/10.1088/1748-9326/8/2/024043
  28. Natta, S., Mondal, S.A., Pal, K., Mandal, S., Sahana, N., Pal, R., Pandit, G.K., Alam, B. K., Das, S.S., Biswas, S.S., Kalaivanan, N.S., 2022. Chemical composition, antioxidant activity and bioactive constituents of six native endangered medicinal orchid species from northeastern Himalayan region of India. South African Journal of Botany, 150: 248–259. https://doi.org/10.1016/j.sajb.2022.07.020
  29. Nautiyal, M.C., Nautiyal, B.P., Prakash, V., 2004. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist, 24: 125–134. https://doi.org/10.1007/s10669-004-4803-z
  30. Noroozi, J., Moser, D., Essl, F., 2015. Diversity, distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. Alpine Botany, 126 (1): 1–9. https://doi.org/10.1007/s00035-015-0160-4
  31. Nunez, S., Arets, E., Alkemade, R., Verwer, C., Leemans, R., 2019. Assessing the impacts of climate change on biodiversity: is below 2 °C enough? Climatic Change, 154: 351–365. https://doi.org/10.1007/s10584-019-02420-x
  32. Padalia, H., Srivastava, V., Kushwaha, S.P.S., 2014. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: comparison of MaxEnt and GARP. Ecological Informatics, 22: 36–43. http://dx.doi.org/10.1016/j.ecoinf.2014.04.002
  33. Parolo, G., Rossi, G., 2008. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Applied Ecology, 9: 100–107. https://doi.org/10.1016/j.baae.2007.01.005
  34. Peters, M.K., Hemp, A., Appelhans, T., Becker., J.N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S.W., Frederiksen, S.B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig, M., Hemp, C., Kindeketa, W.J., Kuhnel, A., Mayr, A.V., Mwangomo, E., Ngereza, C., Njoyu, H.K., Otte, I., Pabst, H., Renner, M., Roder, J., Rutten, G., Costa, D.S., Sierra-Cornejo, N., Vollstadt, M.G.R., Dulle, H.I., Eardley, C.D., Howell, K.M., Keller, A., PETERS, R.S., Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Bohning-Gaese, K., Brandl, P., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss, T., Schleuning, M., Tschapka, M., Fischer, M., Steffen-Dewenter, I., 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568: 88–92. https://doi.org/10.1038/s41586-019-1048-z
  35. Phillips, S., Anderson, R., Schapire, R., 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  36. Pridgeon, A, Chase, M., Cribb, P., Rasmussen, F.N., 1999. Genera Orchidacearum. Vol. 1. Oxford, U.S.A: Oxford University Press. 230 p.
  37. Rana, H.K., Luo, D., Rana, S.K., Sun, H., 2020. Geological and climatic factors affect the population genetic connectivity in Mirabilis himalaica (Nyctaginaceae): insight from phylogeography and dispersal corridors in the Himalaya-Hengduan Biodiversity Hotspot. Frontiers in Plant Science, 10: 1721. https://doi.org/10.3389/fpls.2019.01721
  38. Rana, S., Rana, H., Ghimire, S., 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14 (3): 558–570. https://doi.org/10.1007/s11629-015-3822-1
  39. Rathore, P., Roy, A., Karnatak, H., 2019. Modelling the vulnerability of Taxus wallichiana to climate changes cenarios in South East Asia. Ecological Indicators, 102: 199–207. https://doi.org/10.1016/j.ecolind.2019.02.020
  40. Romshoo, S.A., Bashir, J., Rashid, I., 2020. Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models. Climate Change, 162 (3): 1473–1491. https://doi.org/10.1007/s10584-020-02787-2
  41. Shaheen, H., Ibrahim, M., Ullah, Z., 2019. Spatial patterns and diversity of the alpine flora of Deosai plateau, Western Himalayas. Pakistan Journal of Botany, 51 (1): 205–212. http://dx.doi.org/10.30848/PJB2019-1(39)
  42. Shapoo, G.A., Kalo, Z.A., Singh, S., Ganie, A.H., Padder, B.M., 2014. Evaluation of diversity and habitat types of some orchid species growing in Kashmir Himalaya. Species, 10 (22): 8–13.
  43. Sharma, S., Arunachalam, K., Bhavsar, D., Kala, R., 2018. Modelling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research in Medicinal and Aromatic Plants, 10: 99–105. https://doi.org/10.1016/j.jarmap.2018.02.003
  44. Shrestha, B., Tsiftsis, S., Chapagain, D.J., Khadka, C., Bhattarai, P., Kayastha, Shrestha, N., Alicja, Kolanowska, M., Kindlmann, P., 2021 Suitability of habitats in Nepal for Dactylorhiza hatagirea now and under predicted future changes in climate. Plants, 10 (3): 467. https://doi.org/10.3390/plants10030467
  45. Singh, L., Kanwar, N., Bhatt, I.D., Nandi, S.K., Bisht, A.K., 2022. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS ONE, 17 (6): e0269673. https://doi.org/10.1371/journal.pone.0269673
  46. Singh, L., Bhatt, I.D., Negi, V.S., Nandi, S.K., Rawal, R.S., Bisht, A.K., 2021. Population status, threats, and conservation options of the orchid Dactylorhiza hatagirea in Indian Western Himalaya. Regional Environmental Change, 21: 40. https://doi.org/10.1007/s10113-021-01762-6
  47. Singh, R.M., Chandra, J.T., Rinchen, D., Ayyanadar, A., Prakash, Y.O., 2017. Struggle from subsistence to sustainability and threat to local biodiversity under changing climate: a case study on Ladakh folk agriculture. Climate Change and Environmental Sustainability, 5 (1): 59–65. https://doi.org/10.5958/2320-42X.2017.00006.0
  48. Smeraldo, S., Di Febbraro, M., Bosso, L., Flaquer, C., Guixé, D., Lisón, F., Meschede, A., Juste, J., Prüger, J., Puig-Montserrat, X., Russo, D., 2018. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiversity and Conservation, 27: 2425–2441, https://doi.org/10.1007/s10531-018-1545-7
  49. Sorbe, F., Gränzig, T., Förster, M., 2023. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Ecological Informatics, 76: 102124. https://doi.org/10.1016/j.ecoinf.2023.102124
  50. Štípková, Z., Tsiftsis, S., Kindlmann, P., 2024. Is the GBIF appropriate for use as input in models of predicting species distributions? Study from the Czech Republic. Nature Conservation Research, 9 (1): 84–95. https://dx.doi.org/10.24189/ncr.2024.008
  51. Stockwell, D., Peterson, A., 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148 (1): 1–13. https://doi.org/10.1016/S0304-3800(01)00388-X
  52. Swarts, N.D., Dixon, K.W., 2009. Terrestrial orchid conservation in the age of extinction. Annals of Botany,104 (3): 543–556.https://dx.doi.org/10.1093%2Faob%2Fmcp025
  53. Thakur, N., Kaur, R., 2013. Molecular characterization of Dactylorhiza hatagirea (D. Don) Soó - A critically endangered medicinal orchid. International Journal of Medicinal and Aromatic Plants, 3 (2): 184–190.
  54. Thakur, D., Rathore, N., Sharma, M.K., Prakash, O., Chawla, A., 2021. Identification of ecological factors affecting the occurrence and abundance of Dactylorhiza hatagirea (D. Don) Soó in the Himalaya. Journal of Applied Research on Medicinal and Aromatic Plants, 20: 100286. https://doi.org/10.1016/j.jarmap.2020.100286
  55. Venne, S., Currie, D.J., 2021. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Diversity and Distributions, 27: 873–886. https://doi.org/10.1111/ddi.13238
  56. Vij, S.P., 2002. Orchids and tissue culture: current status. In Role of plant tissue culture in biodiversity conservation and economic development. Nainital, India: Gyanodaya Prakashan, p. 491–502.
  57. Voldoire, A., Sanchez-Gomez, E., Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., 2013. The CNRMCM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40 (10): 2091–2121. https://doi.org/10.1007/s00382-011-1259-y
  58. Wani, I.A., Khan, S., Verma, S. Al-Misned, A., Shafik, H.M., El-Serehy, H., 2022. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Scientific Reports, 12: 13205 (2022). https://doi.org/10.1038/s41598-022-16837-5
  59. Wani, I.A., Verma, S., Mushtaq, S., Alsahli, A.A., Alyemeni, M.N., Tariq, M., Pant, S., 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soó: A conservation approach for critically endangered medicinal orchid. Saudi Journal of Biological Sciences, 28 (4): 2109–2122. https://doi.org/10.1016/j.sjbs.2021.01.054
  60. Warghat, A.R., Bajpai, P.K., Sood, H., Chaurasia, O.P., Srivastava, R.B., 2012. Morphometric analysis of Dactylorhiza hatagirea (D. Don), a critically endangered orchid in cold desert Ladakh region of India. African Journal of Biotechnology, 11 (56): 11943–11951. https://doi.org/10.5897/AJB11.4242
  61. Warghat, A.R., Bajpai, P.K., Srivastava, R.B., Chaurasia, O.P., Sood, H., 2013. Population gennetic structure and conservation of small fragmented location of Dactylorhiza hatagirea in Ladakh region of India. Scientia Horticulturae, 164: 448–454.
  62. Warren, D.L., Seifert, S.N., 2011. Ecological niche modelling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21: 335–342. http://dx.doi.org/10.2307/29779663
  63. Weldemariam, E.Ch., Dejene, S.W.D., 2021. Predicting invasion potential of Senna didymobotrya (Fresen.) Irwin & Barneby under the changing climate in Africa. Ecological Processes, 10: article number 5 (2021). https://doi.org/10.1186/s13717-020-00277-y
  64. Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forch-hammer, M.C., Grytnes, J.A., Guisan, A., Heikkinen, R.K., Hoye, T.T., Kuhn, I., Luoto, M., Maiorano, L., Nilsson, M.C., Normand, S., Ockinger, E., Schimdt, N.M., Termansen, M., Timmermann, A., Wardle, D.A., Asstrup, P., Svenning, J.C., 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88 (1): 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x
  65. Xu, D., Zhuo, Z., Wang, R., Ye, M., Pu, B., 2019. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 19: e00691. https://doi.org/10.1016/j.gecco.2019.e00691
  66. Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., Roy, P.S. 2013. Maxent modeling for predicting the potential dis tribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51: 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004
  67. Yi, Y., Cheng, X., Wieprecht, S., Tang, C., 2014. Comparison of habitat suitability models using different habitat suitability evaluation methods. Ecological Engineering, 71: 335–345. https://doi.org/10.1016/j.ecoleng.2014.07.034
  68. Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, H., Obata, A., Nakano, H., Koshiro, T., Ose, T., Kitoh, A., 2012. A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance. Journal of Meteorological Society of Japan. Series II, 90A: 23–64. https://doi.org/10.2151/jmsj.2012-A02
  69. Zlatanov, T., Elkin, C., Irauschek, F., Lexer M.J., 2017. Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Regional Environmental Change, 17: 79–91. https://doi.org/10.1007/s10113-015-0869-z
  70. Zhong, Y., Xue, Z., Jiang, M., Liu, B., Wang, G., 2021. The application of species distribution modeling in wetland restoration: a case study in the Songnen Plain, Northeast China. Ecological Indictors, 121: 107137. https://doi.org/10.1016/j.ecolind.2020.107137
DOI: https://doi.org/10.2478/foecol-2025-0006 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 48 - 61
Submitted on: Aug 2, 2024
Accepted on: Nov 8, 2024
Published on: Jan 28, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Javaid M. Dad, Irfan Rashid, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.