References
- A
bolmaali , R., Tarkesh , M., Bashari , H., 2018. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43: 116–123. https://doi.org/10.1016/j.ecoinf.2017.10.002 - A
dhikari , D., Reshi , Z., Datta , B.K., Samant , S.S., Chettri , A., Upadhaya , K., Shah , M.A., Singh , P.P., Tiwary , T., Majumdar , K., Pradhan , A., Thakur , M.L., Salam , N., Zahoor , Z., Agarwal ., A., Khokhar , D., Vishwanath , 2008. Conservation through in vitro propagation of a critically endangered medicinal plant, Dactylorhiza hatagirea (D. Don) Soó. In Reddy, M.V. (eds). Wildlife biodiversity conservation. Daya Publishing House, p. 294–299. - A
khter , C., Khuroo , A.A., Dar , G.H., Khan , Z.S., Malik , A.H., 2011. An updated checklist of orchids in the Indian Himalayan State of Jammu and Kashmir. Pleione, 5 (1): 1–9. - A
llouche , O., Tsoar , A., Kadmon , R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43 (6): 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x - A
l -Qaddi , N., Vessella , F., Stephan , J., Al -Eisawi , D., Schirone , B., 2017. Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environment Change, 17: 143–156. https://doi.org/10.1007/s10113-016-0987-2 - A
yan , S., Bugday , E., Varol T., Ozel , B.H., Thurm , E.A., 2022. Effect of climate change on potential distribution of oriental beech (Fagus orientalis Lipsky.) in the twenty frst century in Turkey. Theoretical and Applied Climatology, 148: 165–177. https://doi.org/10.1007/s00704-022-03940-w - B
askin , C.C., Baskin , J.M., 1998. Seeds: ecology, biogeography, and, evolution of dormancy and germination. San Diego: Academic Press. 666 p. - B
hatt , A., Joishi , S.K., Garola , S., 2005. Dactylorhiza hatagirea (D. Don) Soó - a west Himalayan orchid in Peril. Current Science, 89: 610–612. https://www.jstor.org/stable/24111155 - CBD, 2019. Biodiversity and the 2030 Agenda for sustainable development. Technical note. Montréal, Quebec, Canada: Secretariat of the Convention on Biological Diversity. [cit. 2024-07-22]. https:/www.cbd.int/development/doc/biodiversity-2030-agenda-technical-note-en.pdf.
- C
hauhan , R.S., Nautiyal , M.C., Vashistha , R.K., Prasad , P., 2014. Morpho-biochemical variability and selection strategies for the germplasm of Dactylorhiza hatagirea (D. Don) Soó: an endangered medicinal orchid. Journal of Botany, 2014: article ID 869167, 5 p. https://doi.org/10.1155/2014/869167 - C
hugh , S., Guha , S., Rao , I.U., 2009. Micropropagation of orchids: a review on the potential of different ex-plants. Scientia Horticulture, 122: 507–507. https://doi.org/10.1016/j.scienta.2009.07.016 - D
ad , J., 2019. Phytodiversity and medicinal plant distribution in pasturelands of North Western Himalaya in relation to environmental gradients. Journal of Mountain Science, 16 (4): 884–897. https://doi.org/10.1007/s11629-018-5104-1 - D
ad , J.M., Khan , A.B., 2011. Threatened medicinal plants of Gurez valley, Kashmir Himalayas: distribution pattern and current conservation status. International Journal of Biodiversity Science, Ecosystem Services and Management, 7 (1): 20–26. - D
himan , N., Sharma , N.K., Thapa , P., Sharma , I., Swarnkar , M.K., Chawla , A., Shankar , R., Bhattacharya , A., 2019. De novo transcriptome provides insights into the growth behavior and resveratrol and trans-stilbenes biosynthesis in Dactylorhiza hatagirea - an endangered alpine terrestrial orchid of western Himalaya. Scientific Reports, 9: 13133. https://doi.org/10.1038/s41598-019-49446-w - D
hyani , P.P., Kala , C.P., 2005. Current research on medicinal plants: five lesser-known but valuable aspects. Current Science, 88 (3): 335 - F
ois , M., Cuena -Lombraña , A., Fenu , G., Cogoni , D., Bacchetta , G., 2016. The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. Journal of Nature Conservation, 33: 1–9. https://doi.org/10.1016/j.jnc.2016.06.001 - G
ebrewahid , Y., Abrehe , S., Meresa , E., 2020. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecological Processes, 9: article number 6 (2020). https://doi.org/10.1186/s13717-019-0210-8 - G
oraya , G.S., Ved , D.K., 2017. Medicinal plants in India: an assessment of their demand and supply. New Delhi: National Medicinal Plants Board, Ministry of AYUSH, Government of India; Dehradun: Indian Council of Forestry Research and Education. 395 p. - G
riffies , S., Winton , M., Donner , L., Horowitz , L., Downes , S., Farneti , R., Gnanadesikan , A., Hurl in , W., Lee H., Liang , Z., Palter , J., 2011. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. Journal of Climatology, 24 (13): 3520–3544. https://doi.org/10.1175/2011JCLI3964.1 - H
offmann , A.A., Rymer , P.D., Byrne , M., Ruthrof , K.X., Whinam , J., Mc Geoch , M., Bergstrom , D.M., Guerin , G.R., Sparrow , B., Joseph , L., Hill , S.J., Andrew , N.R., Camac , J., Bell , N., Riegler , M., Gardner , J.L., Williams , S.E., 2019. Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. Australian Ecology, 44: 3–27. https://doi.org/10.1111/aec.12674 - IPCC, 2014. Climate Change 2014. Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., Meyer, L.A(eds)]. IPCC, Switzerland. 151 p.
- IUCN. 2004. National register of medicinal and aromatic plants. International Union for Nature Conservation Nepal, Kathmandu, Nepal.
- J
alal , J.S., Rawat , G.S., 2009. Habitat studies for conservation of medicinal orchids of Uttarakhand, Western Himalaya. African Journal of Plant Science, 3 (9): 200–204. - K
aky , M., Nolan , V., Alatawi , A., Gilbert , F., 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Ecological Informatics, 60: 101150. https://doi.org/10.1016/j.ecoinf.2020.101150 - L
ughadha , E. N., Bachman , S.P., Leão , T.C.C., Forest , F., Halley , J.M., Moat , J., Acedo , C., Bacon , K.L., Brewer , R.F.A., Gâteblé , G., Gonçalves , S.C., Govaerts , R., Hollingsworth , P.M., Krisai -Greilhuber , I.,de Lirio , E.J., Moore , P.G.P., Negrão , R., Onana , J.M., Rajaovelona , L.R., Razanajatovo , H., Reich , P.B., Richards , S.L., Rivers , M.C., Cooper , A., Iganci , J., Lewis , G.P., Smidt , E.C., Antonelli , A., Mueller , G.M., Walker , B.E., 2020. Extinction risk and threats to plants and fungi. Plants People Planet, 2: 389–408. https://doi.org/10.1002/ppp3.10146 - M
arco , M.D., Harwood , T.D., Hoskins , A.J., Ware , C., Hill , S.L.L., Ferrier , S., 2019. Projecting impacts of global climate and land‐use scenarios on plant bio-diversity using compositional‐turnover modelling. Global Change Biology, 25 (8): 2763–2778. https://doi.org/10.1111/gcb.14663 - M
atteodo , M., Wipf , S., Stöckli , V., Rixen , C., Vittoz , P., 2013. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environment Research Letters, 8 (2): 024043. https://doi.org/10.1088/1748-9326/8/2/024043 - N
atta , S., Mondal , S.A., Pal , K., Mandal , S., Sahana , N., Pal , R., Pandit , G.K., Alam , B. K., Das , S.S., Biswas , S.S., Kalaivanan , N.S., 2022. Chemical composition, antioxidant activity and bioactive constituents of six native endangered medicinal orchid species from northeastern Himalayan region of India. South African Journal of Botany, 150: 248–259. https://doi.org/10.1016/j.sajb.2022.07.020 - N
autiyal , M.C., Nautiyal , B.P., Prakash , V., 2004. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist, 24: 125–134. https://doi.org/10.1007/s10669-004-4803-z - N
oroozi , J., Moser , D., Essl , F., 2015. Diversity, distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. Alpine Botany, 126 (1): 1–9. https://doi.org/10.1007/s00035-015-0160-4 - N
unez , S., Arets , E., Alkemade , R., Verwer , C., Leemans , R., 2019. Assessing the impacts of climate change on biodiversity: is below 2 °C enough? Climatic Change, 154: 351–365. https://doi.org/10.1007/s10584-019-02420-x - P
adalia , H., Srivastava , V., Kushwaha , S.P.S., 2014. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: comparison of MaxEnt and GARP. Ecological Informatics, 22: 36–43. http://dx.doi.org/10.1016/j.ecoinf.2014.04.002 - P
arolo , G., Rossi , G., 2008. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Applied Ecology, 9: 100–107. https://doi.org/10.1016/j.baae.2007.01.005 - P
eters , M.K., Hemp , A., Appelhans , T., Becker ., J.N., Behler , C., Classen , A., Detsch , F., Ensslin , A., Ferger , S.W., Frederiksen , S.B., Gebert , F., Gerschlauer , F., Gütlein , A., Helbig , M., Hemp , C., Kindeketa , W.J., Kuhnel , A., Mayr , A.V., Mwangomo , E., Ngereza , C., Njoyu , H.K., Otte , I., Pabst , H., Renner , M., Roder , J., Rutten , G., Costa , D.S., Sierra -Cornejo , N., Vollstadt , M.G.R., Dulle , H.I., Eardley , C.D., Howell , K.M., Keller , A., PETERS, R.S., Ssymank , A., Kakengi , V., Zhang , J., Bogner , C., Bohning -Gaese , K., Brandl , P., Hertel , D., Huwe , B., Kiese , R., Kleyer , M., Kuzyakov , Y., Nauss , T., Schleuning , M., Tschapka , M., Fischer , M., Steffen -Dewenter , I., 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568: 88–92. https://doi.org/10.1038/s41586-019-1048-z - P
hillips , S., Anderson , R., Schapire , R., 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 - P
ridgeon , A, Chase , M., Cribb , P., Rasmussen , F.N., 1999. Genera Orchidacearum. Vol. 1. Oxford, U.S.A: Oxford University Press. 230 p. - R
ana , H.K., Luo , D., Rana , S.K., Sun , H., 2020. Geological and climatic factors affect the population genetic connectivity in Mirabilis himalaica (Nyctaginaceae): insight from phylogeography and dispersal corridors in the Himalaya-Hengduan Biodiversity Hotspot. Frontiers in Plant Science, 10: 1721. https://doi.org/10.3389/fpls.2019.01721 - R
ana , S., Rana , H., Ghimire , S., 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14 (3): 558–570. https://doi.org/10.1007/s11629-015-3822-1 - R
athore , P., Roy , A., Karnatak , H., 2019. Modelling the vulnerability of Taxus wallichiana to climate changes cenarios in South East Asia. Ecological Indicators, 102: 199–207. https://doi.org/10.1016/j.ecolind.2019.02.020 - R
omshoo , S.A., Bashir , J., Rashid , I., 2020. Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models. Climate Change, 162 (3): 1473–1491. https://doi.org/10.1007/s10584-020-02787-2 - S
haheen , H., Ibrahim , M., Ullah , Z., 2019. Spatial patterns and diversity of the alpine flora of Deosai plateau, Western Himalayas. Pakistan Journal of Botany, 51 (1): 205–212. http://dx.doi.org/10.30848/PJB2019-1(39) - S
hapoo , G.A., Kalo , Z.A., Singh , S., Ganie , A.H., Padder , B.M., 2014. Evaluation of diversity and habitat types of some orchid species growing in Kashmir Himalaya. Species, 10 (22): 8–13. - S
harma , S., Arunachalam , K., Bhavsar , D., Kala , R., 2018. Modelling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research in Medicinal and Aromatic Plants, 10: 99–105. https://doi.org/10.1016/j.jarmap.2018.02.003 - S
hrestha , B., Tsiftsis , S., Chapagain , D.J., Khadka , C., Bhattarai , P., Kayastha , Shrestha , N., Alicja , Kolanowska , M., Kindlmann , P., 2021 Suitability of habitats in Nepal for Dactylorhiza hatagirea now and under predicted future changes in climate. Plants, 10 (3): 467. https://doi.org/10.3390/plants10030467 - S
ingh , L., Kanwar , N., Bhatt , I.D., Nandi , S.K., Bisht , A.K., 2022. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS ONE, 17 (6): e0269673. https://doi.org/10.1371/journal.pone.0269673 - S
ingh , L., Bhatt , I.D., Negi , V.S., Nandi , S.K., Rawal , R.S., Bisht , A.K., 2021. Population status, threats, and conservation options of the orchid Dactylorhiza hatagirea in Indian Western Himalaya. Regional Environmental Change, 21: 40. https://doi.org/10.1007/s10113-021-01762-6 - S
ingh , R.M., Chandra , J.T., Rinchen , D., Ayyanadar , A., Prakash , Y.O., 2017. Struggle from subsistence to sustainability and threat to local biodiversity under changing climate: a case study on Ladakh folk agriculture. Climate Change and Environmental Sustainability, 5 (1): 59–65. https://doi.org/10.5958/2320-42X.2017.00006.0 - S
meraldo , S., Di Febbraro , M., Bosso , L., Flaquer , C., Guixé , D., Lisón , F., Meschede , A., Juste , J., Prüger , J., Puig -Montserrat , X., Russo , D., 2018. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiversity and Conservation, 27: 2425–2441, https://doi.org/10.1007/s10531-018-1545-7 - S
orbe , F., Gränzig , T., Förster , M., 2023. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Ecological Informatics, 76: 102124. https://doi.org/10.1016/j.ecoinf.2023.102124 - Š
típková , Z., Tsiftsis , S., Kindlmann , P., 2024. Is the GBIF appropriate for use as input in models of predicting species distributions? Study from the Czech Republic. Nature Conservation Research, 9 (1): 84–95. https://dx.doi.org/10.24189/ncr.2024.008 - S
tockwell , D., Peterson , A., 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148 (1): 1–13. https://doi.org/10.1016/S0304-3800(01)00388-X - S
warts , N.D., Dixon , K.W., 2009. Terrestrial orchid conservation in the age of extinction. Annals of Botany,104 (3): 543–556.https://dx.doi.org/10.1093%2Faob%2Fmcp025 - T
hakur , N., Kaur , R., 2013. Molecular characterization of Dactylorhiza hatagirea (D. Don) Soó - A critically endangered medicinal orchid. International Journal of Medicinal and Aromatic Plants, 3 (2): 184–190. - T
hakur , D., Rathore , N., Sharma , M.K., Prakash , O., Chawla , A., 2021. Identification of ecological factors affecting the occurrence and abundance of Dactylorhiza hatagirea (D. Don) Soó in the Himalaya. Journal of Applied Research on Medicinal and Aromatic Plants, 20: 100286. https://doi.org/10.1016/j.jarmap.2020.100286 - V
enne , S., Currie , D.J., 2021. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Diversity and Distributions, 27: 873–886. https://doi.org/10.1111/ddi.13238 - V
ij , S.P., 2002. Orchids and tissue culture: current status. In Role of plant tissue culture in biodiversity conservation and economic development. Nainital, India: Gyanodaya Prakashan, p. 491–502. - V
oldoire , A., Sanchez -Gomez , E., Mélia , D., Decharme , B., Cassou , C., Sénési , S., Valcke , S., Beau , I., Alias , A., Chevallier , M., Déqué , M., 2013. The CNRMCM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40 (10): 2091–2121. https://doi.org/10.1007/s00382-011-1259-y - W
ani , I.A., Khan , S., Verma , S. Al -Misned , A., Shafik , H.M., El -Serehy , H., 2022. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Scientific Reports, 12: 13205 (2022). https://doi.org/10.1038/s41598-022-16837-5 - W
ani , I.A., Verma , S., Mushtaq , S., Alsahli , A.A., Alyemeni , M.N., Tariq , M., Pant , S., 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soó: A conservation approach for critically endangered medicinal orchid. Saudi Journal of Biological Sciences, 28 (4): 2109–2122. https://doi.org/10.1016/j.sjbs.2021.01.054 - W
arghat , A.R., Bajpai , P.K., Sood , H., Chaurasia , O.P., Srivastava , R.B., 2012. Morphometric analysis of Dactylorhiza hatagirea (D. Don), a critically endangered orchid in cold desert Ladakh region of India. African Journal of Biotechnology, 11 (56): 11943–11951. https://doi.org/10.5897/AJB11.4242 - W
arghat , A.R., Bajpai , P.K., Srivastava , R.B., Chaurasia , O.P., Sood , H., 2013. Population gennetic structure and conservation of small fragmented location of Dactylorhiza hatagirea in Ladakh region of India. Scientia Horticulturae, 164: 448–454. - W
arren , D.L., Seifert , S.N., 2011. Ecological niche modelling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21: 335–342. http://dx.doi.org/10.2307/29779663 - W
eldemariam , E.Ch ., Dejene , S.W.D., 2021. Predicting invasion potential of Senna didymobotrya (Fresen.) Irwin & Barneby under the changing climate in Africa. Ecological Processes, 10: article number 5 (2021). https://doi.org/10.1186/s13717-020-00277-y - W
isz , M.S., Pottier , J., Kissling , W.D., Pellissier , L., Lenoir , J., Damgaard , C.F., Dormann , C.F., Forch -hammer , M.C., Grytnes , J.A., Guisan , A., Heikkinen , R.K., Hoye , T.T., Kuhn , I., Luoto , M., Maiorano , L., Nilsson , M.C., Normand , S., Ockinger , E., Schimdt , N.M., Termansen , M., Timmermann , A., Wardle , D.A., Asstrup , P., Svenning , J.C., 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88 (1): 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x - X
u , D., Zhuo , Z., Wang , R., Ye , M., Pu , B., 2019. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 19: e00691. https://doi.org/10.1016/j.gecco.2019.e00691 - Y
ang , X.Q., Kushwaha , S.P.S., Saran , S., Xu , J., Roy , P.S. 2013. Maxent modeling for predicting the potential dis tribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51: 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004 - Y
i , Y., Cheng , X., Wieprecht , S., Tang , C., 2014. Comparison of habitat suitability models using different habitat suitability evaluation methods. Ecological Engineering, 71: 335–345. https://doi.org/10.1016/j.ecoleng.2014.07.034 - Y
ukimoto , S., Adachi , Y., Hosaka , M., Sakami , T., Yoshimura , H., Hirabara , M., Tanaka , T., Shindo , E., Tsujino , H., Deushi , M., Mizuta , R., Yabu , H., Obata , A., Nakano , H., Koshiro , T., Ose , T., Kitoh , A., 2012. A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance. Journal of Meteorological Society of Japan. Series II, 90A: 23–64. https://doi.org/10.2151/jmsj.2012-A02 - Z
latanov , T., Elkin , C., Irauschek , F., Lexer M.J., 2017. Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Regional Environmental Change, 17: 79–91. https://doi.org/10.1007/s10113-015-0869-z - Z
hong , Y., Xue , Z., Jiang , M., Liu , B., Wang , G., 2021. The application of species distribution modeling in wetland restoration: a case study in the Songnen Plain, Northeast China. Ecological Indictors, 121: 107137. https://doi.org/10.1016/j.ecolind.2020.107137