Have a personal or library account? Click to login
Spring phenological models combining the effects of temperature and photoperiod are successfully transferred to various spatial and temporal scales: a case study of Aesculus hippocastanum L. Cover

Spring phenological models combining the effects of temperature and photoperiod are successfully transferred to various spatial and temporal scales: a case study of Aesculus hippocastanum L.

Open Access
|Jan 2025

References

  1. Asse, D., Randin, Ch.F., Bonhomme, M., Delestrade, A., Chuine, I., 2020. Process-based models outcompete correlative models in projecting spring phenology of trees in a future warmer climate. Agricultural and Forest Meteorology, 285–286: 107931. https://doi.org/10.1016/j.agrformet.2020.107931
  2. Basler, D., 2016. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology, 217: 10–21. https://doi.org/10.1016/j.agrformet.2015.11.007
  3. Basler, D., Körner, C., 2012. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165: 73–81. https://doi.org/10.1016/j.agrformet.2012.06.001
  4. Blümel, K., Chmielewski, F.-M., 2012. Shortcomings of classical phenological forcing models and a way to overcome them. Agricultural and Forest Meteorology, 164: 10–19. https://doi.org/10.1016/j.agrformet.2012.05.001
  5. Buonaiuto, D.M., Wolkovich, E.M., 2021. Differences be tween flower and leaf phenological responses to environmental variation drive shifts in spring phenological sequences of temperate woody plants. Journal of Ecology, 109: 2922–2933. https://doi.org/10.1111/1365-2745.13708
  6. Chuine, I., 2000. A unified model for budburst of trees. Journal of Theoretical Biology, 207(3): 337–347. https://doi.org/10.1006/jtbi.2000.2178
  7. Chuine, I., Kramer, K., Hänninen, H., 2003. Plant development models. In Schwartz, M.D.(eds). Phenology: an integrative environmental science. Tasks for Vegetation Science, 39. Dordrecht: Springer, p. 217–235. https://doi.org/10.1007/978-94-007-0632-3_14
  8. Fazilova, N.F., 2013. Fenologiya kashtana konskogo obyknovennogo (Aesculus hippocastanum) v Uzbekistane [Phenology of horse chestnut (Aesculus hippocastanum) in Uzbekistan]. Aktualnye Napravleniya Nauchnyh Issledovanij XXI Veka: Teoriya i Praktika, 4: 134–136. (In Russian).
  9. Finn, G.A., Straszewski, A.E., Peterson, V., 2007. A general growth stage for describing trees and woody plants. Annals of Applied Biology, 151: 127–131. https://doi.org/10.1111/j.1744-7348.2007.00159.x
  10. Flynn, D.F.B., Wolkovich, E.M., 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist, 219: 1353–1362. https://doi.org/10.1111/nph.15232
  11. Forsythe, W.C., Rykiel, E.J.Jr., Stahl, R.S., Wu, H.-I., Schoolfield, R.M., 1995. A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80 (1): 87–95. https://doi.org/10.1016/0304-3800(94)00034-F
  12. Fu, Y.H., Piao, S., Zhou, X., Geng, X., Hao, F., Vitasse, Y., Janssens, I.A., 2019. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Global Change Biology, 25: 1696–1703. https://doi.org/10.1111/gcb.14599
  13. Gauzere, J., Delzon, S., Davi, H., Bonhomme, M., de Cortazar-Atauri, I.G., Chuine, I., 2017. Integrating interactive effects of chilling and photoperiod in pheno-logical process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agricultural and Forest Meteorology, 244–245: 9–20. https://doi.org/10.1016/j.agrformet.2017.05.011
  14. Gauzere, J., Lucas, C., Ronce, O., Davi, H., Chuine, I., 2019. Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecological Modelling, 411: 108805. https://doi.org/10.1016/j.ecolmodel.2019.108805
  15. Ge, Q., Wang, H., Rutishauser, T., Dai, J., 2015. Phenological response to climate change in China: a meta-analysis, Global Change Biology, 21: 265–274. https://doi.org/10.1111/gcb.12648
  16. Geng, X., Fu, Y.H., Piao, S., Hao, F., De Boeck, H.J., Zhang, X., Chen, S., Guo, Y., Prevéy, J.S., Vitasse, Y., Peñuelas, J., Janssens, I.A., Stenseth, N.Ch., 2022. Higher temperature sensitivity of flowering than leaf-out alters the time between phenophases across temperate tree species. Global Ecology and Biogeography, 31: 901–911. https://doi.org/10.1111/geb.13463
  17. Hänninen, H., 1990. Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213: 1–47. https://doi.org/10.14214/aff.7660
  18. Korsakova, S., Korzin, V., Plugatar, Y., Kazak, A., Gorina, V., Korzina, N., Khokhlov, S., Makoveichuk, K., 2023. Modelling of climate change’s impact on Prunus armeniaca L.’s flowering time. Inventions, 8: 65. https://doi.org/10.3390/inventions8030065
  19. Korsakova, S.P., Korsakov, P.B., Bagrikova, N.A., 2020. Climatogenic changes and forecast of blooming timing of Juniperus deltoides (Cupressaceae). Science in the South of Russia, 16 (3): 40–52. https://doi.org/10.7868/S25000640200305
  20. Korzh, D.A., Trikoz, N.N., 2022. Vliyanie abioticheskih faktorov na sezonnuyu dinamiku chislennosti Cameraria ohridella Deschka & Dimic v Nikitskom Botanicheskom Sadu [The influence of abiotic factors on the seasonal dynamics of the abundance of Cameraria ohridella Deschka & Dimic in the Nikitsky Botanical Gardens]. Biologiya Rastenij i Sadovodstvo: Teoriya, Innovacii, 3 (164): 71–80. https://doi.org/10.36305/2712-7788-2022-3-164-71-80 (In Russian).
  21. Kuranda, Yu.V., 2021. Semennaya reprodukciya Aesculus hippocastanum L. v kollekcii barnaulskogo dendrariya [Seed reproduction of Aesculus hippocastanum L. in the collection of the Barnaul arboretum]. Trudy po Introdukcii i Akklimatizacii Rastenij, 1: 583–588. (In Russian).
  22. Lang, G., Early, J.D., Martin, G., Darnell. R., 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hort Science, 22: 371–377. https://doi.org/10.21273/HORTSCI.22.5.701b
  23. Laube, J., Sparks, T.H., Estrella, N., Höfler, J., Ankerst, D.P., Menzel, A., 2014. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20 (1): 170–182. https://doi.org/10.1111/gcb.12360
  24. Malyshev, A.V., Henry, H.A.L., Bolte, A., Arfin Khan, M.A.S., Kreyling, J., 2018. Temporal photoperiod sensitivity and forcing requirements for budburst in temperate tree seedlings. Agricultural and Forest Meteorology, 248: 82–90. https://doi.org/10.1016/j.agrformet.2017.09.011
  25. Meng, L., Zhou, Y., Gu, L., Richardson, A.D., Peñuelas, J., Fu, Y., Wang, Y., Asrar, G.R., De Boeck, H.J., Mao, J., Zhang, Y., Wang, Zh., 2021. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming, Global Change Biology, 27: 2914–2927. https://doi.org/10.1111/gcb.15575
  26. Migliavacca, M., Sonnentag, O., Keenan, T.F., Cescatti, A., O′Keefe, J., Richardson, A.D., 2012. On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeo-sciences, 9: 2063–2083. https://doi.org/10.5194/bg-9-2063-2012
  27. Minin, A.A., Ananin, A.A., Buyvolov, Yu.A., Larin, E.G., Lebedev, P.A., Polikarpova, N.V., Prokosheva, I.V., Rudenko, M.I., Sapelnikova, I.I., Fedotova, V.G., Shuyskaya, E.A., Yakovleva, M.V., Yantser, O.V., 2020. Rekomendacii po unifikacii fenologicheskih nablyudenij v Rossii [Recommendations to unify phenological observations in Russia]. Nature Conservation Research, 5 (4): 89–110. https://dx.doi.org/10.24189/ncr.2020.060. (In Russian).
  28. Minin, A.A., Rankova, E.Ya., Ribina, E.G., Buyvolov, U.A., Sapelnikova, I.I., Filatova, T.D., 2016. Fenoindikaciya izmenenij klimata za period 1976–2015 gg. v central’noj chasti Evropejskoj territorii Rossii [Phenoindication of current fluctuations in climate in the centre of the European part of Russia for the 1976–2015 years]. Problemy Ekologicheskogo Monitoringa i Modelirovaniya Ekosistem, 27 (2): 17–28. https://doi.org/10.21513/0207-2564-2016-2-17-28. (In Russian).
  29. Mo, Y., Li, X., Guo, Y., Fu, Y., 2023. Warming increases the differences amongst spring phenology models under future climate change. Frontiers in Plant Science, 14: 1266801. https://doi.org/10.3389/fpls.2023.1266801
  30. Olsson, C., Olin, S., Lindström, J., Jönsso, A.M., 2017. Trends and uncertainties in budburst projections of Norway spruce in Northern Europe. Ecology and Evolution, 7: 9954–9969. https://doi.org/10.1002/ece3.3476
  31. Ovaskainen, O., Meyke, E., Lo, C., et al., 2020. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Scientific Data, 7: 47. https://doi.org/10.1038/s41597-020-0376-z
  32. Parmesan, C., 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9): 1860–1872. https://doi.org/10.1111/j.1365-2486.2007.01404.x
  33. Polgar, C., Primack, R.B., 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist, 191: 926–941. https://doi.org/10.1111/j.1469-8137.2011.03803.x
  34. R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://cran.r-project.org/.
  35. Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169: 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012
  36. Shvydenko, I.M., Bulat, A.G., Slyusarchuk, V.E., Nazarenko, V.V., Buhaiov, S.M., Cherkis, T.M., Stankevych, S.V., Zabrodina, I.V., Matsyura, A.V., 2021. Seasonal development of the chestnut leaf miner (Came-raria ohridella Deschka & Dimic, 1986) in the eastern forest-steppe of Ukraine. Ukrainian Journal of Ecology, 11 (2): 407–416. https://doi.org/10.15421/2021_130
  37. Templ, B., Koch, E., Bolmgren, K., Ungersböck, M., Paul, A., Scheifinger, H., Rutishauser, Th., Busto, M., Chmielewski, F.-M., Hájková, L., Hodzić, S., Kaspar, F., Pietragalla, B., Romero-Fresneda, R., Tolvanen, A., Vučetič, V., Zimmermann, K., Zust, A., 2018. Pan European Phenological database (PEP725): a single point of access for European data. International Journal of Biometeorology, 62: 1109–1113. https://doi.org/10.1007/s00484-018-1512-8
  38. Wang, S., Wu, Z., Gong, Y., Wang, S., Zhang, W., Zhang, Sh., De Boeck, H.J., Fu, Y.H., 2022. Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period. Science China Life Sciences, 65: 2316–2324. https://doi.org/10.1007/s11427-022-2094-6
  39. Wickham, H., 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org.
  40. Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T.M., Betancourt, J.L., Travers, S.E., Pau, S., Regetz, J., Davies, T.J., Kraft, N.J., Ault, T.R., Bolmren, K., Mazer, S.J., McCabe, G.J., McGill, B.J., Parmesan, C., Salamin, N., Schwartz, M.D., Cleland, E.E., 2012. Warming experiments under predict plant phenological responses to climate change. Nature, 485 (7399): 494–497. https://doi.org/10.1038/nature11014
  41. Zohner, C., Benito, B., Svenning, J-C., Renner, S.S., 2016. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 6: 1120–1123. https://doi.org/10.1038/nclimate3138
  42. Zohner, C.M., Renner, S.S., 2015. Perception of photoperi od in individual buds of mature trees regulates leaf-out. New Phytologist, 208: 1023–1030. https://doi.org/10.1111/nph.13510
DOI: https://doi.org/10.2478/foecol-2025-0003 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 22 - 33
Submitted on: Jun 2, 2024
Accepted on: Dec 6, 2024
Published on: Jan 28, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Svetlana Korsakova, Pavel Korsakov, Vladislav Evstigneev, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.