References
- A
sse , D., Randin , Ch .F., Bonhomme , M., Delestrade , A., Chuine , I., 2020. Process-based models outcompete correlative models in projecting spring phenology of trees in a future warmer climate. Agricultural and Forest Meteorology, 285–286: 107931. https://doi.org/10.1016/j.agrformet.2020.107931 - B
asler , D., 2016. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology, 217: 10–21. https://doi.org/10.1016/j.agrformet.2015.11.007 - B
asler , D., Körner , C., 2012. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165: 73–81. https://doi.org/10.1016/j.agrformet.2012.06.001 - B
lümel , K., Chmielewski , F.-M., 2012. Shortcomings of classical phenological forcing models and a way to overcome them. Agricultural and Forest Meteorology, 164: 10–19. https://doi.org/10.1016/j.agrformet.2012.05.001 - B
uonaiuto , D.M., Wolkovich , E.M., 2021. Differences be tween flower and leaf phenological responses to environmental variation drive shifts in spring phenological sequences of temperate woody plants. Journal of Ecology, 109: 2922–2933. https://doi.org/10.1111/1365-2745.13708 - C
huine , I., 2000. A unified model for budburst of trees. Journal of Theoretical Biology, 207(3): 337–347. https://doi.org/10.1006/jtbi.2000.2178 - C
huine , I., Kramer , K., Hänninen , H., 2003. Plant development models. In Schwartz, M.D.(eds). Phenology: an integrative environmental science. Tasks for Vegetation Science, 39. Dordrecht: Springer, p. 217–235. https://doi.org/10.1007/978-94-007-0632-3_14 - F
azilova , N.F., 2013. Fenologiya kashtana konskogo obyknovennogo (Aesculus hippocastanum) v Uzbekistane [Phenology of horse chestnut (Aesculus hippocastanum) in Uzbekistan]. Aktualnye Napravleniya Nauchnyh Issledovanij XXI Veka: Teoriya i Praktika, 4: 134–136. (In Russian). - F
inn , G.A., Straszewski , A.E., Peterson , V., 2007. A general growth stage for describing trees and woody plants. Annals of Applied Biology, 151: 127–131. https://doi.org/10.1111/j.1744-7348.2007.00159.x - F
lynn , D.F.B., Wolkovich , E.M., 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist, 219: 1353–1362. https://doi.org/10.1111/nph.15232 - F
orsythe , W.C., Rykiel , E.J.Jr ., Stahl , R.S., Wu , H.-I., Schoolfield , R.M., 1995. A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80 (1): 87–95. https://doi.org/10.1016/0304-3800(94)00034-F - F
u , Y.H., Piao , S., Zhou , X., Geng , X., Hao , F., Vitasse , Y., Janssens , I.A., 2019. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Global Change Biology, 25: 1696–1703. https://doi.org/10.1111/gcb.14599 - G
auzere , J., Delzon , S., Davi , H., Bonhomme , M.,de Cortazar -Atauri , I.G., Chuine , I., 2017. Integrating interactive effects of chilling and photoperiod in pheno-logical process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agricultural and Forest Meteorology, 244–245: 9–20. https://doi.org/10.1016/j.agrformet.2017.05.011 - G
auzere , J., Lucas , C., Ronce , O., Davi , H., Chuine , I., 2019. Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecological Modelling, 411: 108805. https://doi.org/10.1016/j.ecolmodel.2019.108805 - G
e , Q., Wang , H., Rutishauser , T., Dai , J., 2015. Phenological response to climate change in China: a meta-analysis, Global Change Biology, 21: 265–274. https://doi.org/10.1111/gcb.12648 - G
eng , X., Fu , Y.H., Piao , S., Hao , F., De Boeck , H.J., Zhang , X., Chen , S., Guo , Y., Prevéy , J.S., Vitasse , Y., Peñuelas , J., Janssens , I.A., Stenseth , N.Ch ., 2022. Higher temperature sensitivity of flowering than leaf-out alters the time between phenophases across temperate tree species. Global Ecology and Biogeography, 31: 901–911. https://doi.org/10.1111/geb.13463 - H
änninen , H., 1990. Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213: 1–47. https://doi.org/10.14214/aff.7660 - K
orsakova , S., Korzin , V., Plugatar , Y., Kazak , A., Gorina , V., Korzina , N., Khokhlov , S., Makoveichuk , K., 2023. Modelling of climate change’s impact on Prunus armeniaca L.’s flowering time. Inventions, 8: 65. https://doi.org/10.3390/inventions8030065 - K
orsakova , S.P., Korsakov , P.B., Bagrikova , N.A., 2020. Climatogenic changes and forecast of blooming timing of Juniperus deltoides (Cupressaceae). Science in the South of Russia, 16 (3): 40–52. https://doi.org/10.7868/S25000640200305 - K
orzh , D.A., Trikoz , N.N., 2022. Vliyanie abioticheskih faktorov na sezonnuyu dinamiku chislennosti Cameraria ohridella Deschka & Dimic v Nikitskom Botanicheskom Sadu [The influence of abiotic factors on the seasonal dynamics of the abundance of Cameraria ohridella Deschka & Dimic in the Nikitsky Botanical Gardens]. Biologiya Rastenij i Sadovodstvo: Teoriya, Innovacii, 3 (164): 71–80. https://doi.org/10.36305/2712-7788-2022-3-164-71-80 (In Russian). - K
uranda , Yu .V., 2021. Semennaya reprodukciya Aesculus hippocastanum L. v kollekcii barnaulskogo dendrariya [Seed reproduction of Aesculus hippocastanum L. in the collection of the Barnaul arboretum]. Trudy po Introdukcii i Akklimatizacii Rastenij, 1: 583–588. (In Russian). - L
ang , G., Early , J.D., Martin , G., Darnell . R., 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hort Science, 22: 371–377. https://doi.org/10.21273/HORTSCI.22.5.701b - L
aube , J., Sparks , T.H., Estrella , N., Höfler , J., Ankerst , D.P., Menzel , A., 2014. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20 (1): 170–182. https://doi.org/10.1111/gcb.12360 - M
alyshev , A.V., Henry , H.A.L., Bolte , A., Arfin Khan , M.A.S., Kreyling , J., 2018. Temporal photoperiod sensitivity and forcing requirements for budburst in temperate tree seedlings. Agricultural and Forest Meteorology, 248: 82–90. https://doi.org/10.1016/j.agrformet.2017.09.011 - M
eng , L., Zhou , Y., Gu , L., Richardson , A.D., Peñuelas , J., Fu , Y., Wang , Y., Asrar , G.R., De Boeck , H.J., Mao , J., Zhang , Y., Wang , Zh ., 2021. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming, Global Change Biology, 27: 2914–2927. https://doi.org/10.1111/gcb.15575 - M
igliavacca , M., Sonnentag , O., Keenan , T.F., Cescatti , A., O′Keefe , J., Richardson , A.D., 2012. On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeo-sciences, 9: 2063–2083. https://doi.org/10.5194/bg-9-2063-2012 - M
inin , A.A., Ananin , A.A., Buyvolov , Yu .A., Larin , E.G., Lebedev , P.A., Polikarpova , N.V., Prokosheva , I.V., Rudenko , M.I., Sapelnikova , I.I., Fedotova , V.G., Shuyskaya , E.A., Yakovleva , M.V., Yantser , O.V., 2020. Rekomendacii po unifikacii fenologicheskih nablyudenij v Rossii [Recommendations to unify phenological observations in Russia]. Nature Conservation Research, 5 (4): 89–110. https://dx.doi.org/10.24189/ncr.2020.060. (In Russian). - M
inin , A.A., Ran ’kova , E.Ya ., Ribina , E.G., Buyvolov , U.A., Sapel ’nikova , I.I., Filatova , T.D., 2016. Fenoindikaciya izmenenij klimata za period 1976–2015 gg. v central’noj chasti Evropejskoj territorii Rossii [Phenoindication of current fluctuations in climate in the centre of the European part of Russia for the 1976–2015 years]. Problemy Ekologicheskogo Monitoringa i Modelirovaniya Ekosistem, 27 (2): 17–28. https://doi.org/10.21513/0207-2564-2016-2-17-28. (In Russian). - M
o , Y., Li , X., Guo , Y., Fu , Y., 2023. Warming increases the differences amongst spring phenology models under future climate change. Frontiers in Plant Science, 14: 1266801. https://doi.org/10.3389/fpls.2023.1266801 - O
lsson , C., Olin , S., Lindström , J., Jönsso , A.M., 2017. Trends and uncertainties in budburst projections of Norway spruce in Northern Europe. Ecology and Evolution, 7: 9954–9969. https://doi.org/10.1002/ece3.3476 - O
vaskainen , O., Meyke , E., Lo , C.,et al ., 2020. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Scientific Data, 7: 47. https://doi.org/10.1038/s41597-020-0376-z - P
armesan , C., 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9): 1860–1872. https://doi.org/10.1111/j.1365-2486.2007.01404.x - P
olgar , C., Primack , R.B., 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist, 191: 926–941. https://doi.org/10.1111/j.1469-8137.2011.03803.x - R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://cran.r-project.org/.
- R
ichardson , A.D., Keenan , T.F., Migliavacca , M., Ryu , Y., Sonnentag , O., Toomey , M., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169: 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012 - S
hvydenko , I.M., Bulat , A.G., Slyusarchuk , V.E., Nazarenko , V.V., Buhaiov , S.M., Cherkis , T.M., Stankevych , S.V., Zabrodina , I.V., Matsyura , A.V., 2021. Seasonal development of the chestnut leaf miner (Came-raria ohridella Deschka & Dimic, 1986) in the eastern forest-steppe of Ukraine. Ukrainian Journal of Ecology, 11 (2): 407–416. https://doi.org/10.15421/2021_130 - T
empl , B., Koch , E., Bolmgren , K., Ungersböck , M., Paul , A., Scheifinger , H., Rutishauser , Th ., Busto , M., Chmielewski , F.-M., Hájková , L., Hodzić , S., Kaspar , F., Pietragalla , B., Romero -Fresneda , R., Tolvanen , A., Vučetič , V., Zimmermann , K., Zust , A., 2018. Pan European Phenological database (PEP725): a single point of access for European data. International Journal of Biometeorology, 62: 1109–1113. https://doi.org/10.1007/s00484-018-1512-8 - W
ang , S., Wu , Z., Gong , Y., Wang , S., Zhang , W., Zhang , Sh ., De Boeck , H.J., Fu , Y.H., 2022. Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period. Science China Life Sciences, 65: 2316–2324. https://doi.org/10.1007/s11427-022-2094-6 - W
ickham , H., 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org. - W
olkovich , E.M., Cook , B.I., Allen , J.M., Crimmins , T.M., Betancourt , J.L., Travers , S.E., Pau , S., Regetz , J., Davies , T.J., Kraft , N.J., Ault , T.R., Bolmren , K., Mazer , S.J., Mc Cabe , G.J., Mc Gill , B.J., Parmesan , C., Salamin , N., Schwartz , M.D., Cleland , E.E., 2012. Warming experiments under predict plant phenological responses to climate change. Nature, 485 (7399): 494–497. https://doi.org/10.1038/nature11014 - Z
ohner , C., Benito , B., Svenning , J-C., Renner , S.S., 2016. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 6: 1120–1123. https://doi.org/10.1038/nclimate3138 - Z
ohner , C.M., Renner , S.S., 2015. Perception of photoperi od in individual buds of mature trees regulates leaf-out. New Phytologist, 208: 1023–1030. https://doi.org/10.1111/nph.13510