Have a personal or library account? Click to login
Relationship between deadwood structural diversity and carbon stock along environmental and disturbance gradients in Tropical dry forests Cover

Relationship between deadwood structural diversity and carbon stock along environmental and disturbance gradients in Tropical dry forests

Open Access
|Jan 2025

References

  1. Alamgir, M., Campbell, M. J., Sloan, S., Goosem, M., Clements, G.R., Mahmoud, M.I., Laurance, W.F., 2017. Economic, socio-political and environmental risks of road development in the tropics. Current Biology, 27 (20): R1130-R1140. https://doi.org/10.1016/j.cub.2017.08.067
  2. Arasa-Gisbert, R., Vayreda, J., Román-Cuesta, R.M., Villela, S.A., Mayorga, R., Retana, J., 2018. Forest diversity plays a key role in determining the stand carbon stocks of Mexican forests. Forest Ecology and Management, 415: 160–171. https://doi.org/10.1016/j.foreco.2018.02.023
  3. Austin, M.P., 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157 (3): 101–118. https://doi.org/10.1016/S0304-3800(02)00205-3
  4. Barton, K., 2009. MuMIn: multi-model inference. R package version 1. 0. 0. [cit. 2023-04-20]. http://r-forge.r-project.org/projects/mumin/2009
  5. Bauhus, J., Baber, K., Müller, J., 2018. Dead wood in forest ecosystems. Advances in Ecological Research, 15: 133–302.
  6. Beals, E.W., 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. In Advances in ecological research, vol. 14. New York: Academic Press, p. 1–55.
  7. Błońska, E., Lasota, J., 2017. Soil organic matter accumulation and carbon fractions along a moisture gradient of forest soils. Forests,8: 448. https://doi.org/10.3390/f8110448
  8. Błońska, E., Lasota, J., Tullus, A., Lutter, R., Ostonen, I., 2019. Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests. Annals of Forest Science, 76 (4): 102.
  9. Brockerhoff, E.G., Barbaro, L., Castagneyrol, B., Forrester, D.I., Gardiner, B., González-Olabarria, J.R., Lyver, P.O., Meurisse, N., Oxbrough, A., Taki, H., 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation 26, (13): 3005–3035.
  10. Chahouki, Z., Zare Chahouki, A., 2010. Predicting the distribution of plant species using logistic regression (Case study: Garizat rangelands of Yazd province). Desert, 15 (2): 151–158. DOI: 10.22059/jdesert.2011.23012
  11. Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecology Letters, 12 (4): 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
  12. Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A., Hansen, M.C., 2018. Classifying drivers of global forest loss. Science, 361 (6407): 1108–1111. DOI: 10.1126/science. aau3445
  13. FAO, (2020). The state of the worlds forests. Forests, biodiversity and people. Rome, Italy: Food and Agriculture Organization. 214 p.
  14. Garbarino, M., Marzano, R., Shaw, J.D., Long, J.N., 2015. Environmental drivers of deadwood dynamics in woodlands and forests. Ecosphere, 6 (3): 1–24. https://doi.org/10.1890/ES14-00342.1
  15. Giliba, R.A., Boon, E.K., Kayombo, C.J., Musamba, E.B., Kashindye, A.M., Shayo, P.F., 2011. Species composition, richness and diversity in Miombo woodland of Bereku Forest Reserve, Tanzania. Journal of Biodiversity, 2 (1): 1–7.
  16. Girmay, M., Bekele, T., Demissew, S., Lulekal, E., 2020. Ecological and floristic study of Hirmi woodland vegetation in Tigray Region, Northern Ethiopia. Ecological Processes, 9 (1): 53. https://doi.org/10.1186/s13717-020-00257-2
  17. Gogoi, A., Ahirwal, J., Sahoo, U.K., 2022. Evaluation of ecosystem carbon storage in major forest types of Eastern Himalaya: implications for carbon sink management. Journal of Environmental Management, 302: 113972. https://doi.org/10.1016/j.jenvman.2021.113972
  18. Grueber, C.E., Nakagawa, S., Laws, R.J., Jamieson, I.G., 2011. Multimodel inference in ecology and evolution: Challenges and solutions. Journal of Evolutionary Biology, 24 (4): 699–711. https://doi.org/10.1111/j.1420-9101.2010.02210.x
  19. Hezron, E., Nyahongo, J., 2021. Quantification of deadwood littered by Acacia spp. in semi-arid ecosystems of central Tanzania: the role of deadwood in biodiversity conservation. Journal of Biodiversity and Environmental Sciences, 13 (6): 29–37.
  20. Humphrey, J.W., Sippola, A.L., Lempérière, G., Dodelin, B., Alexander, K.N.A., Butler, J.E., 2005. Deadwood as an indicator of biodiversity in European forests: from theory to operational guidance. In Monitoring and indicators of forest biodiversity in Europe – from ideas to operationality. EFI Proceedings 51. Joensuu: European Forest Institute, p. 193–206.
  21. IPCC, 2006. Guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme. Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (eds). Japan: Institute for Global Environmental Strategies. 32 p.
  22. Jew, E.K., Dougill, A.J., Sallu, S.M., O’Connell, J., Benton, T.G., 2016. Miombo woodland under threat: consequences for tree diversity and carbon storage. Forest Ecology and Management, 361: 144–153. https://doi.org/10.1016/j.foreco.2015.11.011
  23. Kacholi, D.S., 2014. Analysis of structure and diversity of the Kilengwe Forest in the Morogoro Region, Tanzania. International Journal of Biodiversity, 2014 (1): 516840. https://doi.org/10.1155/2014/516840
  24. Kechagioglou, S., Papadopoulou, D., Tsitsoni, T., 2022. Determining structure and volume of the European beech (L.) deadwood in managed stands in the Rodopi Mountain Range National Park, Greece. Folia Oecologica, 49 (2): 122–129. https://doi.org/10.2478/foecol-2022-0014
  25. Komposch, A., Ensslin, A., Fischer, M., Hemp, A., 2022. Aboveground deadwood biomass and composition along elevation and land-use gradients at Mount Kilimanjaro. Frontiers in Ecology and Evolution, 9: 732092. https://doi.org/10.3389/fevo.2021.732092
  26. Koskikala, J., Kukkonen, M., Käyhkö, N., 2020. Mapping natural forest remnants with multi-source and multi-temporal remote sensing data for more informed management of global biodiversity hotspots. Remote Sensing, 12 (9): 1429. https://doi.org/10.3390/rs12091429
  27. Magurran, A.E., 2013. Measuring biological diversity. New York: Wiley-Blackwell.
  28. Masek, J.G., Cohen, W.B., Leckie, D., Wulder, M.A., Vargas, R., de Jong, B., Smith, W.B., 2011. Recent rates of forest harvest and conversion in North America. Journal of Geophysical Research: Biogeosciences, 116 (G00K03). https://doi.org/10.1029/2010JG001471
  29. MNRT, 2015. National Forest Resources Monitoring and Assessment of Tanzania Mainland. Dar es Salaam: Ministry of Natural Resources and Tourism, Tanzania Forest Services Agency. 95 p.
  30. Moreno-Fernández, D., Hernández, L., Cañellas, I., Adame, P., Alberdi, I., 2020. Analysing the dynamics of the deadwood carbon pool in Spain through the European Level I Monitoring Programme. Forest Ecology and Management, 463: 118020. https://doi.org/10.1016/j.foreco.2020.118020
  31. Mwakalukwa, E.E., Meilby, H., Treue, T., 2014. Floristic composition, structure, and species associations of dry miombo woodland in Tanzania. International Scholarly Research, 2014: 153278. https://doi.org/10.1155/2014/153278
  32. Mwakosya, J., Mligo, C., 2014. The impacts of anthropogenic activities on the vegetation communities and structure in the western part of Rungwe forest reserve, Tanzania. Tanzania Journal of Science, 40 (1): 58–69.
  33. Schuldt, A., Liu, X., Buscot, F., Bruelheide, H., Erfmeier, A., He, J. S., Staab, M., 2023. Carbon–biodiversity relationships in a highly diverse subtropical forest. Global Change Biology, 29 (18): 5321–5333. https://doi.org/10.1111/gcb.16697
  34. Seidl, R., Rammer, W., Spies, T., 2014. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecological Applications, 24: 2063–2077. https://doi.org/10.1890/14-0255.1
  35. Sharma, C.M., Tiwari, O.P., Rana, Y.S., Krishan, R., Mishra, A.K., 2018. Elevational behaviour on dominance–diversity, regeneration, biomass and carbon storage in ridge forests of Garhwal Himalaya, India. Forest Ecology and Management, 424: 105–120. https://doi.org/10.1016/j.foreco.2018.04.038
  36. Shirima, D.D., Munishi, P.K., Lewis, S.L., Burgess, N.D., Marshall, A.R., Balmford, A., Swetnam, R.D., Zahabu, E.M. (2011). Carbon storage, structure and composition of miombo woodlands in Tanzania’s Eastern Arc Mountains. African Journal of Ecology, 49 (3): 332–342. https://doi.org/10.1111/j.1365-2028.2011.01269.x
  37. Teshome, M., Asfaw, Z., Dalle, G., 2020. Effect of environmental gradients on diversity and plant community distribution in remnant dry Afromontane Forest of Mount Duro, Nagelle Arsi, Ethiopia. Biodiversity Research and Conservation, 58 (1): 21–31. https://doi.org/10.2478/biorc-2020-0004
  38. Thinsungnoena, T., Kaoungkub, N., Durongdumronchaib, P., Kerdprasopb, K., Kerdprasopb, N., 2015. The clustering validity with silhouette and sum of squared errors. In Proceedings of the 3rd International Conference on Industrial Application Engineering 2015. Japan: The Institute of Industrial Applications Engineers, p. 44–51. DOI:10.12792/ICIAE2015.012
  39. Toledo, M., Peña‐Claros, M., Bongers, F., Alarcón, A., Balcázar, J., Chuviña, J., Leaño, C., Licona, J. C., Poorter, L., 2012. Distribution patterns of tropical woody species in response to climatic and edaphic gra dients. Journal of Ecology, 100 (1): 253–263. DOI: 10.1111/j.1365-2745.2011.01890.x
  40. Tomppo, E., Malimbwi, R., Katila, M., Mäkisara, K., Henttonen, H. M., Chamuya, N., Zahabu, E., Otieno, J., 2014. A sampling design for a large area forest inventory: case Tanzania. Canadian Journal of Forest Research, 44 (8): 931–948. https://doi.org/10.1139/cjfr-2013-0490
  41. URT, 2017. Tanzanias Forest Reference Emission Level Submission to the UNFCCC. Dar es Salaam: Government Printers. 56 p.
  42. Woodall, C.W., Heath, L.S., Smith, J.E., 2008. National inventories of down and dead woody material forest carbon stocks in the United States: challenges and opportunities. Forest Ecology and Management, 256 (3): 221–228.
  43. Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C., Chave, J., 2009. Global wood density database. [cited 2023-07-10]. http://hdl.handle.net/10255/dryad.235
  44. Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A. A., Smith, G.M., 2009. Mixed effects models and extensions in ecology with R. New York: Springer, 4 p.
DOI: https://doi.org/10.2478/foecol-2025-0001 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 1 - 13
Submitted on: May 13, 2024
Accepted on: Dec 6, 2024
Published on: Jan 28, 2025
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Sarafina N. Masanja, Deo D. Shirima, Eliakimu M. Zahabu, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.