Have a personal or library account? Click to login
Floral traits and functional role of whorls in pollinator attraction of Magnolia grandiflora L. Cover

Floral traits and functional role of whorls in pollinator attraction of Magnolia grandiflora L.

Open Access
|Jul 2024

References

  1. Allain, K.L., Zavada, M.S., Matthews, G.D., 1999. The reproductive biology of Magnolia grandiflora. Rhodora, 101: 143–162.
  2. Alm, J., Ohnmeiss, T.E., Lanza, J., Vriesenga, L., 1990. Preference of cabbage white butterflies and honeybees for nectar that contains amino acids. Oecologia, 84: 53–57. https://doi.org/10.1007/BF00665594
  3. Arber, E.A.N., Parkin, J., 1907. On the origin of angiosperms. Journal of the Linnean Society Botany, 38: 29–80.
  4. Arnanson, J.T., Philogène, B.J.R., Duval, F., Mclachlan, D., Picman, A.K., Towers, G.H.N.,Balza, F., 1985. Effects of sesquiterpene lactones on development of Aedes atropalpus and relation to partition coefficient. Journal of Natural Products, 48: 581–584.
  5. Becker, A., Alix, K., Damerval, C., 2011. The evolution of flower development: Current understanding and future challenges. Annals of Botany, 107: 1427–1431. https://doi.org/10.1093/aob/mcr122
  6. Byerley, M., 2006. Patterns and consequences of floral formula variation in Phlox (Polemoniaceae). PhD thesis. Colorado State University.
  7. Borg-Karlson, A.K., Groth, I., Agren, L., Kullenberg, B., 1993. Form-specific fragrances from Ophrys insectifera L. (Orchidaceae) attract species of different pollinator genera: evidence of sympatric speciation? Chemoecology, 4: 39–45. https://doi.org/10.1007/BF01245895
  8. Canright, J.E., 1952. The comparative morphology and relations of the Magnoliaceae. I. Trends of specialization in the stamens. American Journal of Botany, 39: 484–497.
  9. Carrington, M.E., Gottfried, T.D., Mullahey, J.J., 2003. Pollination biology of saw palmetto (Serenoarepens) in southwestern Florida. Palms, 47: 95–103.
  10. Cicuzza, D., Newton, A., Oldfield, S., 2007. The Red List of Magnoliaceae. Cambridge: Lavenham Press.
  11. Citerne, H., Jabbour, F., Nadot, S., Damerval, C., 2010. The evolution of floral symmetry. Advances in Botanical Research, 54: 85–137. https://doi.org/10.1016/S0065-2296(10)54003-5
  12. Cronquist, A., 1981. An integrated system of classification of flowering plants. New York: Columbia University Press, NY. 1262 p.
  13. Datta, S., Saxena, D.B., 1997. Parthenin and azadirachtin-A as antifeedants against Spodoptera litura (Fab). Pesticide Research Journal, 9: 263–266. https://doi.org/10.1016/S0065-2296(10)54003-5
  14. Di Sotto, A., Do Giacomo, S., Abete, L., Božović, M., Parisi, O.A., Barile, F., Vitalone, A.,Izzo, A.A., Ragno, R., MazzantiA, G., 2017. Genotoxicity assessment of piperitenoneoxide: an in vitro and in silico evaluation. Food and Chemical Toxicology, 106: 506–513. https://doi.org/10.1016/j.fct.2017.06.021
  15. Dieringer, G., Espinosa, S.J.E., 1994. Reproductive ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico. Torrey Botanical Society, 121: 154–159. https://doi.org/10.2307/2997167
  16. Dudareva, N., Klempien, A., Muhlemann, J.K., Kaplan, I., 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198: 16–32. https://doi.org/10.1111/nph.12145
  17. Elle, E., Carney, R., 2003. Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae). American Journal of Botany, 90: 888–896. https://doi.org/10.3732/ajb.90.6.888
  18. Endress, P.K., 2010. The evolution of floral biology in basal angiosperms. Philosophical Transactions of the Royal Society, 365: 411–421. https://doi.org/10.1098/rstb.2009.0228
  19. Faegri, K., Van Der Pijl, L., 1979. The principles of pollination ecology. 3rd ed. Oxford: Pergamon Press. 248 p.
  20. Firmage, D.H., Cole, F.R., 1988. Reproductive success and inflorescence size of Calopogon tuberosus (Orchidaceae). American Journal of Botany, 75: 1371–1377. https://doi.org/10.1002/j.1537-2197.1988.tb14198.x
  21. Galen, C., Newport, M.E.A., 1987. Bumble bee behavior and selection on flower size in the skypilot, Polemonium viscosum. Ecology, 74: 20–23.
  22. Galen, C., Kaczorowski, R., todd, S.L., Geib, J., Raguso, R.A., 2011. Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the alpine skypilot Polemonium viscosum. American Naturalist, 177: 258–272.
  23. Gibbs, P.E., Semir, J., Diniz, D.A., Cruz, N., 1977. Floral biology of Talauma ovata St. Hil. (Magnoliaceae). Ciência & Cultura, 29: 1437–1444.
  24. Gottsberger, G., Silberbauer-Gottsberger, I., Seymour, RS.,Dötterl, 2012. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora, 207: 107–118.
  25. Gupta, S.K., Monika., Gupta, V., Deepika., 2016. An overview of airborne contact dermatitis. Air & Water Borne Diseases, 5: 126.
  26. Hansen, D.M., Van DerNiet, T., Johnson, S.D., 2012. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proceedings of the Royal Society B: Biological Sciences, 279: 634–639. https://doi.org/10.1098/rspb.2011.1349
  27. Heiser Jr., C.B., 1962. Some observations on pollination and compatibility in Magnolia. Proceedings of the Indiana Academy of Science, 72: 259–266.
  28. Huang, M., Sanchez-Moreiras, A.M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J., Tholl, D., 2012. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defence against a bacterial pathogen. New Phytologist, 193: 997–1008. https://doi.org/10.1111/j.1469-8137.2011.04001.x
  29. Huda, M.K., Wilcock, C.C., 2008. Impact of floral traits on the reproductive success of epiphytic and terrestrial tropical orchids. Oecologia, 154: 731–741. https://doi.org/10.1007/s00442-007-0870-4
  30. Junker, R.R., Hocherl, N., Blüthgen, N., 2010. Responses to olfactory signals reflect network structure of flower-visitor interactions. Journal of Animal Ecology, 79: 818–823. https://doi.org/10.1111/j.1365-2656.2010.01698.x
  31. Junker, R.R., Parachnowitsch, A.L., 2015. Working towards a holistic view on flower traits-how floral scents mediate plant-animal interactions in concert with other floral characters. Journal of the Indian Institute of Science, 95: 43–67
  32. Kessler, D., Gase, K., Baldwin, I.T., 2008. Field experiments with transformed plants reveal the sense of floral scents. Science, 321: 1200–1202. DOI: 10.1126/science. 11600
  33. Khanduri, V.P., 2022. Birds visiting flowers of Erythrina suberosa: their abundance, frequency of visits and role as pollinators in a sub-tropical montane forest of Garhwal Himalaya. Polish Journal of Ecology, 70 (2-3): 117–127. https://doi.org/10.3161/15052249PJE2020.70.2.005
  34. Khanduri, V.P., 2023. Pollen limitation failing reproductive success in selected animal pollinated trees of tropical moist deciduous forest of north-eastern hill region, India. Hacquetia, 221: 117–129. DOI: 10.2478/hacq-2022-0014
  35. Khanduri, V.P., Kumar, K.S., Sharma, C.M., Riyal, M.K., Kar, K., 2019a. Pollen limitation and seed set associated with year-to-year variation in flowering of Gmelina arborea in a natural tropical forest. Grana, 58 (2): 133–143. https://doi.org/10.1080/00173134.2018.1536164
  36. Khanduri, V.P., Kumar, K.S., Sharma, C.M., Riyal, M.K., Kar, K., Singh, B., Sukumaran, A., 2021. Passerine birds supporting cross pollination in Erythrina stricta Roxb. Dendrobiology, 85: 117–126. https://doi.org/10.12657/denbio.085.011
  37. Khanduri, V.P., Sukumaran, A., 2019. Pollen dispersion in Myrica esculenta (Myricaceae): a dioecious anemophilous tree species of Himalaya. Aerobiologia, 35: 583–591. https://doi.org/10.1007/s10453-019-09594-y
  38. Khanduri, V.P., Sukumaran, A., Sharma, C.M., 2019b. Re productive biology of Cornus capitata Wall. ex Roxb.: a native species in East Asia. Journal of Forestry Research, 30: 2039–2050. https://doi.org/10.1007/s11676-018-0779-2
  39. Knudsen, J.T., Eriksson, R., Gershenzon, J., Stahl, B., 2006. Diversity and distribution of floral scent. The Botanical Review, 72: 1–120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
  40. Kromer, T., Kessler, M., Lohaus, G., Schmidt‐Lebuhn, A.N., 2008. Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biology, 10: 502–511. https://doi.org/10.1111/j.1438-8677.2008.00058.x
  41. Levin, D.A., 2000. The origin, expansion, and demise of plant species. Oxford. UK: Oxford University Press.
  42. Lloyd, D.G., Webb, C.J., 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms. I. Dichogamy. New Zealand Journal of Botany, 24: 135–162. https://doi.org/10.1080/0028825X.1986.10409725
  43. Lo, M.M., Benfodda, Z., Molinié, R., Meffre, P., 2024. Volatile organic compounds emitted by flowers: ecological roles, production by plants, extraction, and identification. Plants, 13 (3): 417. https://doi.org/10.3390/plants13030417
  44. Losada, J.M., 2014. Magnolia virginiana: ephemeral courting for millions of years. Arnoldia, 71: 19–27.
  45. Medel, R., Botto-Mahan, C., Kalin-Arroyo, M., 2003. Pollinator-mediated selection on the nectar guide phenotype in the Andean monkey flower Mimulus luteus. Ecology, 84: 1721–1732. https://doi.org/10.1890/01-0688
  46. Negre-Zakharov, F., Long, M.C., Dudareva, N., 2009. Floral scents and fruit aromas inspired by nature. In Osbourn, A., Lanzonti, V. (eds). Plant-derived natural products. New York, NY, USA: Springer, p. 405–43.
  47. Paulus, H.F., Gack, C., 1990. Pollination of Ophrys (Orchidaceae) in Cyprus. Plant Systematics and Evolution, 169: 177–207. https://doi.org/10.1007/BF00937674
  48. Perveen, A., 2000. Pollen characters and their evolutionary significance with special reference to the flora of Karachi. Turkish Journal of Biology, 24: 365–377.
  49. Picman, A.K., Elliott, R.H., Towers, G.H.N., 1981. Cardiac-inhibiting properties of the sesquiterpene lactone, parthenin, in the migratory grasshopper, Melanoplus sanguinipes. Canadian Journal of Zoology, 59: 285–292.
  50. Perret, M., Chautems, A., Spichiger, R., Peixoto, M., Savolainen, V., 2001. Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Annals of Botany, 87: 267–273. https://doi.org/10.1006/anbo.2000.1331
  51. Qiu, Y.L., Chase, M.W., Parks, C.R., 1995. A chloroplast DNA phylogenetic study of the eastern Asia – eastern North America disjunct section Rytidospermum of Magnolia (Magnoliaceae). American Journal of Botany, 82 (12): 1582–1588. https://doi.org/10.1002/j.1537-2197.1995.tb13861.x
  52. Schiestl, F.P., Kirk, H., Bigler, L., Cozzolino, S., Desur-mont, G.A., 2014. Herbivory and floral signalling: phenotypic plasticity and tradeoffs between reproduction and indirect defence. New Phytologist, 203: 257–266. https://doi.org/10.1111/nph.12783
  53. Sharma, R.N., Joshi, V.N., 1977. Allomonic principles in Parthenium hysterophorus: potential as insect control agents and role in the seed’s resistance to serious insect depredation. Part II: the biological activity of parthenin on insects. Biovigyanam, 3: 225–231.
  54. Sukumaran, A., Khanduri, V.P., Sharma, C.M., 2020. Pollinator-mediated self-pollination and reproductive assurance in an isolated tree of Magnolia grandiflora L. Ecological Processes, 9: 45. https://doi.org/10.1186/s13717-020-00254-5
  55. Takhtajan, A., 1969. Flowering plants (origin and dispersal). Edinburg: Oliver & Boyd.
  56. Tetali, S.D., 2019. Terpenes and isoprenoids: a wealth of compounds for global use. Planta, 249: 1–8. https://doi.org/10.1007/s00425-018-3056-x
  57. Thien, L.B., 1974. Floral biology of Magnolia. American Journal of Botany, 61: 1037–1045.
  58. Thorne, R.F., 1996. The least specialized angiosperms. In Taylor, D.W., Hickey, L.J. (eds). Flowering plant origin, evolution & phylogeny. New York: Chapman and Hall, p. 286–313.
  59. Trunschke, J., Sletvold, N., Agren, J., 2017. Interaction intensity and pollinator-mediated selection. New Phytologist, 214: 909–912. https://doi.org/10.1111/nph.14479
  60. Tsujimoto, S.G., Ishii, H.H., 2017. Effect of flower perceptibility on spatial-reward associative learning by bumble bees. Behavioral Ecology and Sociobiology, 71 (7): 1–11. DOI: 10.1007/s00265-017-2328-y
  61. Ueda, K., 1986. Vascular systems in the Magnoliaceae. Botanical Magazine, Tokyo, 99: 333–349.
  62. Wen, J., 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics, 30: 421–455. https://doi.org/10.1146/annurev.ecolsys.30.1.421
  63. Xu, F., Rudall, P., 2006. Comparative floral anatomy and ontogeny in Magnoliaceae. Plant Systematics and Evolution, 258: 1–15. DOI: 10.1007/s00606-005-0361-1
  64. Yasukawa, S., Kato, H., Yamaoka, R., Tanaka, H., Arai, H., Kawano, S., 1992. Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae)-I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Species Biology, 7:121–140. https://doi.org/10.1111/j.1442-1984.1992.tb00225.x
  65. Zhang, X.M., 2018. Floral volatile sesquiterpenes of Elsholtzia rugulosa (Lamiaceae) selectively attract Asian honeybees. Journal of Applied Entomology, 142: 359–362. https://doi.org/10.1111/jen.12481
DOI: https://doi.org/10.2478/foecol-2024-0024 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 263 - 274
Submitted on: Dec 17, 2023
Accepted on: Jun 21, 2024
Published on: Jul 29, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Arun Sukumaran, Vinod Prasad Khanduri, Sumeet Gairola, Chandra Mohan Sharma, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.